| A. | x-$\frac{3}{x}$≤4 | B. | |x-2|≤$\sqrt{7}$ | C. | x-4$\sqrt{x}$-3≤0 | D. | x4-4x2-3≤0 |
分析 求出不等式x2-4x-3≤0的解集,再分別求出選項(xiàng)中的不等式的解集,即可得出結(jié)論.
解答 解:∵不等式x2-4x-3≤0的解集是{x|2-$\sqrt{7}$≤x≤2+$\sqrt{7}$},
∴對(duì)于A,不等式x-$\frac{3}{x}$≤4可化為$\frac{{x}^{2}-4x-3}{x}≤0$,解得x≤2-$\sqrt{7}$或0<x≤2+$\sqrt{7}$,
∴不是同解不等式;
對(duì)于B,不等式|x-2|≤$\sqrt{7}$可化為-$\sqrt{7}$≤x-2≤$\sqrt{7}$,解得2-$\sqrt{7}$≤x≤2+$\sqrt{7}$,
解集為{x|2-$\sqrt{7}$≤x≤2+$\sqrt{7}$},是同解不等式;
對(duì)于C,不等式x-4$\sqrt{x}$-3≤0的解為2-$\sqrt{7}$≤$\sqrt{x}$≤2+$\sqrt{7}$,即0≤x≤${(2+\sqrt{7})}^{2}$,
∴不是同解不等式;
對(duì)于D,不等式x4-4x2-3≤0的解為2-$\sqrt{7}$≤x2≤2+$\sqrt{7}$,即-$\sqrt{2+\sqrt{7}}$≤x≤$\sqrt{2+\sqrt{7}}$,
∴不是同解不等式.
故選:B.
點(diǎn)評(píng) 本題考查了幾種類型的不等式的解法與應(yīng)用問題,是綜合性題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com