分析 根據(jù)減函數(shù)的定義,設(shè)任意的x1>x2>0,然后作差,通分,便可證明f(x1)<f(x2),從而證出f(x)在(0,+∞)上是減函數(shù).
解答 證明:設(shè)x1>x2>0,則:
$f({x}_{1})-f({x}_{2})=\frac{2}{{x}_{1}}-\frac{2}{{x}_{2}}=\frac{2({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$;
∵x1>x2>0;
∴x2-x1<0,x1x2>0;
∴f(x1)<f(x2);
∴f(x)在(0,+∞)上是減函數(shù).
點評 考查減函數(shù)的定義,以及根據(jù)減函數(shù)的定義證明一個函數(shù)為減函數(shù)的方法和過程,作差的方法比較f(x1),f(x2)的大小.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>2$\sqrt{2}$ | B. | a$<2\sqrt{2}$ | C. | a<3 | D. | a>3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(x)的圖象過點(0,$\frac{1}{2}$) | B. | f(x)在[$\frac{π}{12}$,$\frac{2π}{3}$]上是減函數(shù) | ||
| C. | f(x)的一個對稱中心是($\frac{5π}{12}$,0) | D. | f(x)的圖象的一條對稱軸是x=$\frac{5π}{12}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com