欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.函數(shù)$y=4x-\sqrt{2x-1}$的值域?yàn)閇$\frac{15}{8}$,+∞).

分析 利用換元法,轉(zhuǎn)化為一元二次函數(shù)進(jìn)行求解即可.

解答 解:由2x-1≥0得x≥$\frac{1}{2}$,即函數(shù)的值域?yàn)閇$\frac{1}{2}$,+∞),
設(shè)t=$\sqrt{2x-1}$,則t≥0,
且t2=2x-1,即x=$\frac{1+{t}^{2}}{2}$,
則原函數(shù)等價(jià)為y=4×$\frac{1+{t}^{2}}{2}$-t=2t2-t+2=2(t-$\frac{1}{4}$)2+$\frac{15}{8}$,
∵t≥0,∴y≥$\frac{15}{8}$,
即函數(shù)的值域?yàn)閇$\frac{15}{8}$,+∞),
故答案為:[$\frac{15}{8}$,+∞)

點(diǎn)評(píng) 本題主要考查函數(shù)值域的求解,利用換元法,結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知兩個(gè)不共線向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,且$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-7$\overrightarrow{{e}_{2}}$,若A,B,D三點(diǎn)共線,則λ的值為-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間(0,1)內(nèi)任取兩個(gè)數(shù)x,y,則滿足y≥2x概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列各式的值:
(1)5sin90°+2cos0°-3sin270°+10cos180°
(2)sin$\frac{π}{6}$-cos2$\frac{π}{4}$cosπ-$\frac{1}{3}$tan2$\frac{π}{3}$-cosπ+sin$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,M為AD1的中點(diǎn),N在BC上,且MN∥平面DCC1D1,則BN的長為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等腰梯形ABCD,上底CD=1,腰AD=CB=$\sqrt{2}$,下底AB=3,以下底所在直線為x軸,則由斜二側(cè)畫法畫出的直觀圖A′B′C′D′的面積為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式-x2+4x+5<0的解集是(  )
A.{x|x>5或x<-1}B.{x|x≥5或x≤-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系中,分別取與 x 軸,y 軸方向相同的兩個(gè)單位向量作$\overrightarrow{i},\overrightarrow{j}$為基底,若向量,$\overrightarrow{a}=cos\frac{π}{3}\overrightarrow{i}+sin\frac{π}{3}\overrightarrow{j}$,$\overrightarrow=cos\frac{2π}{3}\overrightarrow{i}+sin\frac{2π}{3}\overrightarrow{j}$,則|$\overrightarrow{a}-\overrightarrow$|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)Sn是數(shù)列{an}(n∈N*)的前n項(xiàng)和,a1=1,且Sn2=n2an+Sn-12,an≠0,n≥2,n∈N*
(1)證明:an+2-an=2(n∈N*);
(2)若an=log3bn,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案