欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.函數(shù)y=2x3-3x2-12x+5在[-3,3]上的最大值是12.

分析 對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)求研究函數(shù)y=2x3-3x2-12x+5在[-3,3]上的單調(diào)性,判斷出最大值與最小值位置,代入算出結(jié)果.

解答 解:函數(shù)y=2x3-3x2-12x+5,
y′=6x2-6x-12,
令y′>0,解得x>2,或x<-1,令y′<0,解得-1<x<2,
故函數(shù)y=2x3-3x2-12x+5在[-3,-1]增,在[-1,2]減,在[2,3]遞增.
當(dāng)x=-3,y=-40;當(dāng)x=-1,y=12;
當(dāng)x=3,y=-4;當(dāng)x=2,y=-15.
由此得函數(shù)y=2x3-3x2-12x+5在[-3,3]上的最大值12.
故答案為:12.

點(diǎn)評(píng) 本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和求最值,本題是導(dǎo)數(shù)一章中最基本的題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=log2|-2x+a|在區(qū)間(3,4)上單調(diào),則a的取值范圍是(  )
A.(6,8)B.[8,+∞)C.(-∞,6)∪(8,+∞)D.(-∞,6]∪[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{a(x-1)}{{x}^{2}}$,其中a>0
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x-y-1=0,求a的值
(2)試判斷函數(shù)f(x)在區(qū)間(3,5)上的單調(diào)性
(3)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(e=2.71828…是自然底數(shù)的對(duì)數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+3x2-12x+5(a為實(shí)數(shù))在x=1處取得極值.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:$\sqrt{2}$ax+by=1與圓x2+y2=1相交于A、B兩點(diǎn)(其中a,b為實(shí)數(shù)),點(diǎn)Q(0,$\frac{2}{3}$)是圓內(nèi)的一定點(diǎn).
(1)若a=$\sqrt{2}$,b=1,求△AOB的面積;
(2)若△AOB為直角三角形(O為坐標(biāo)原點(diǎn)),求點(diǎn)P(a,b)與點(diǎn)Q之間距離最大時(shí)的直線l方程;
(3)若△AQB為直角三角形,且∠AQB=90°,試求AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四邊形ABCD中,DC∥AB,AD⊥AB,AB=4,AD=DC=2,E,F(xiàn)分別為AD,BC的中點(diǎn),將梯形ABCD沿EF折起,使得二面角D-EF-A為直二面角
(1)求折起后BD與CF所成角的余弦值;
(2)求二面角F-BC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的下頂點(diǎn)為B(0,-1),B到焦點(diǎn)煌距離為2.
(1)設(shè)Q是橢圓上的動(dòng)點(diǎn),求|BQ|的最大值;
(2)直線l過定點(diǎn)P(0,2)與橢圓C交于兩點(diǎn)M,N,△BMN的面積為$\frac{6}{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對(duì)累乘運(yùn)算π有如下定義:$\underset{\stackrel{n}{π}}{k=1}$ak=a1×a2×…×an,下列命題中的真命題是( 。
A.$\underset{\stackrel{1007}{π}}{k=1}$2k不能被10100整除
B.$\frac{\underset{\stackrel{2015}{π}}{k=1}(4k-2)}{\underset{\stackrel{2014}{π}}{k=1}(2k-1)}$=22015
C.$\underset{\stackrel{1008}{π}}{k=1}$(2k-1)不能被5100整除
D.$\underset{\stackrel{1008}{π}}{k=1}$(2k-1)$\underset{\stackrel{1007}{π}}{k=1}$2k=$\underset{\stackrel{2015}{π}}{k=1}$k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出滿足下列條件的x的取值范圍:
(1)tanx>0;
(2)tanx=0;
(3)tanx<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案