分析 (1)由數(shù)量積和三角函數(shù)運算可得f(x)=2sin(2x+$\frac{π}{6}$)-t,t的范圍即為y=2sin(2x+$\frac{π}{6}$)在x∈[0,$\frac{π}{2}$]上值域,由三角函數(shù)的知識可得;
(2)由(1)和題意易得A=$\frac{π}{3}$,由余弦定理可得a2=16-3bc,結(jié)合題意由基本不等式可得.
解答 解:(1)∵$\overrightarrow{m}$=($\sqrt{3}$cosx,2),$\overrightarrow{n}$=(2sinx,cos2x),
∴f(x)=$\overrightarrow{m}•\overrightarrow{n}$-1-t=2$\sqrt{3}$sinxcosx+2cos2x-1-t
=$\sqrt{3}$sin2x+cos2x-t=2sin(2x+$\frac{π}{6}$)-t,
∵f(x)=2sin(2x+$\frac{π}{6}$)-t=0在x∈[0,$\frac{π}{2}$]上有解,
∴t的取值范圍即為y=2sin(2x+$\frac{π}{6}$)在x∈[0,$\frac{π}{2}$]上值域,
∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴2sin(2x+$\frac{π}{6}$)∈[-1,2],
∴t的取值范圍為[-1,2];
(2)由(1)可知f(A)=2sin(2A+$\frac{π}{6}$)-2=-1,
∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,即A=$\frac{π}{3}$,
由余弦定理可得a2=b2+c2-2bccosA=b2+c2-bc
=(b+c)2-3bc=42-3bc=16-3bc
≥16-3($\frac{b+c}{2}$)2=4,
當(dāng)且僅當(dāng)b=c=2時取等號,
∴a2≥4,∴a≥2
∴a的最小值為2
點評 本題考查解三角形,涉及三角函數(shù)的值域和余弦定理以及基本不等式求最值,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (10,12) | B. | (25,30) | C. | $(4,\frac{24}{5})$ | D. | (25,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | m≤$\frac{5}{2}$ | B. | m≥$\frac{3}{2}$ | C. | -2<m<2 | D. | -2≤m≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com