| A. | 2+$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $2+2\sqrt{2}$ | D. | 0 |
分析 根函數f(x)=Acos(ωx+φ)(A>0,ω>0)及其圖象,可以求得A=2,ω=$\frac{π}{4}$,利用函數的周期性可以求得答案.
解答 解:由圖象知A=2,T=$\frac{2π}{ω}=8$可得ω=$\frac{π}{4}$,
由五點對應法得$\frac{π}{4}×2+φ=0$,可求得$φ=-\frac{π}{2}$,
∴$f(x)=2sin\frac{π}{4}x$,
又f(1)+f(2)+f(3)+…+f(8)=0,
∴f(1)+f(2)+f(3)+…+f(2012)=f(1)+f(2)+f(3)+f(4)=2sin$\frac{π}{4}$+2sin$\frac{π}{2}$+2sin$\frac{3π}{4}$+2sinπ=2×$\frac{\sqrt{2}}{2}$+2+2×$\frac{\sqrt{2}}{2}$
=2+2$\sqrt{2}$,
故選:C.
點評 本題考查三角函數解析式的求解,根據三角函數的圖象與周期性是解決本題的關鍵.,難點在于根據圖象求得A,ω,φ的值,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
| A. | -$\frac{7}{24}$ | B. | $\frac{7}{24}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}$ | B. | $\overrightarrow{BD}-\overrightarrow{CF}+\overrightarrow{DF}=\overrightarrow{0}$ | C. | $\overrightarrow{AD}+\overrightarrow{CE}-\overrightarrow{CF}=\overrightarrow{0}$ | D. | $\overrightarrow{BD}-\overrightarrow{BE}-\overrightarrow{FC}=\overrightarrow{0}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | -3 | C. | 3或-3 | D. | $\sqrt{3}$或-$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | -20 | B. | 20 | C. | -10 | D. | 10 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com