分析 若PF1⊥x軸,或PF2⊥x軸時,把x=±2$\sqrt{3}$代入橢圓方程,解得y即可得到三角形的高,即可得到△PF1F2的面積.若P為直角頂點,在Rt△POF1中,可得∠F1PF2=60°,故不可能有PF1⊥PF2.
解答 解:由橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1可得:a2=16,b2=4,∴c2=a2-b2=12.
①若PF1⊥x軸,或PF2⊥x軸時,把x=±2$\sqrt{3}$代入橢圓方程得 $\frac{12}{16}$$+\frac{{y}^{2}}{4}$=1,解得y=±1,∴h=1,
∴△PF1F2的面積=$\frac{1}{2}$|F1F2|×h=$\frac{1}{2}$×4$\sqrt{3}$×3=6$\sqrt{3}$.
②若P為橢圓短軸的一個頂點(0,2),
在Rt△POF1中,tan∠OPF1=$\frac{\sqrt{3}}{2}$<1,∴∠OPF1<45°,∴∠F1PF2<90°,
故不可能有PF1⊥PF2
故答案為:6$\sqrt{3}$.
點評 熟練掌握分類討論思想方法、三角形面積的計算公式、點與橢圓的關(guān)系是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com