分析 已知等式左邊利用同角三角函數(shù)間基本關(guān)系化簡,右邊利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式及誘導公式化簡,根據(jù)sinC不為0求出cosA的值,即可確定出A的度數(shù).
解答 解:已知等式左邊$\frac{tanA}{tanB}$=$\frac{sinAcosB}{cosAsinB}$,右邊由正弦定理化簡得:$\frac{\sqrt{2}c-b}$=$\frac{\sqrt{2}sinC-sinB}{sinB}$,
即$\frac{sinAcosB}{cosAsinB}$=$\frac{\sqrt{2}sinC-sinB}{sinB}$,
整理得:sinAcosB=$\sqrt{2}$sinCcosA-sinBcosA,即sinAcosB+cosAsinB=$\sqrt{2}$sinCcosA,
整理得:sin(A+B)=sinC=$\sqrt{2}$sinCcosA,
∵sinC≠0,∴cosA=$\frac{\sqrt{2}}{2}$,
則A=45°.
點評 此題考查了同角三角函數(shù)基本關(guān)系的運用,正弦定理,誘導公式,以及兩角和與差的正弦函數(shù)公式,熟練掌握公式及定理是解本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ${∫}_{0}^{1}$exdx<${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | B. | ${∫}_{0}^{1}$exdx>${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | ||
| C. | (${∫}_{0}^{1}$exdx)2=${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx | D. | $\frac{1}{2}$${∫}_{0}^{1}$exdx=${∫}_{0}^{1}$e${\;}^{{x}^{2}}$dx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1.5 | B. | 3 | C. | 0.5 | D. | 3.5 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com