設(shè)數(shù)列{an},{bn}滿足a1=b1,且對(duì)任意正整數(shù)n,{an}中小于等于n的項(xiàng)數(shù)恰為bn;{bn}中小于等于n的項(xiàng)數(shù)恰為an.
(1)求a1;
(2)求數(shù)列{an}的通項(xiàng)公式.
(1)首先,容易得到一個(gè)簡(jiǎn)單事實(shí):{an}與{bn}均為不減數(shù)列且an∈N,bn∈N.
若a1=b1=0,故{an}中小于等于1的項(xiàng)至少有一項(xiàng),從而b1≥1,這與b1=0矛盾.
若a1=b1≥2,則{an}中沒有小于或等于1的項(xiàng),從而b1=0,這與b1≥2矛盾.
所以,a1=1.
(2)假設(shè)當(dāng)n=k時(shí),ak=bk=k,k∈N*.
若ak+1≥k+2,因{an}為不減數(shù)列,故{an}中小于等于k+1的項(xiàng)只有k項(xiàng),
于是bk+1=k,此時(shí){bn}中小于等于k的項(xiàng)至少有k+1項(xiàng)(b1,b2,…,bk,bk+1),
從而ak≥k+1,這與假設(shè)ak=k矛盾.
若ak+1=k,則{an}中小于等于k的項(xiàng)至少有k+1項(xiàng)(a1,a2,…,ak,ak+1),
于是bk≥k+1,這與假設(shè)bk=k矛盾.
所以,ak+1=k+1.
所以,當(dāng)n=k+1時(shí),猜想也成立.
綜上,由(1),(2)可知,an=bn=n對(duì)一切正整數(shù)n恒成立.
所以,an=n,即為所求的通項(xiàng)公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,軸截面的面積等于
,母線與軸的夾角為
,則這個(gè)圓臺(tái)的高為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在極坐標(biāo)系中,圓C的圓心坐標(biāo)為
,半徑為2. 以極點(diǎn)為原點(diǎn),極軸為
的正半軸,取相同的長(zhǎng)度單位建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù))
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)
與圓C的交點(diǎn)為
,
與
軸的交點(diǎn)為
,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)中
,圓
:
,圓
:
,點(diǎn)
,動(dòng)點(diǎn)P、Q
分別在圓
和圓
上,滿足
,則線段
的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若五個(gè)數(shù)1,2,3,4,a的平均數(shù)為3,則這五個(gè)數(shù)的標(biāo)準(zhǔn)差是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若關(guān)于x的方程![]()
= kx + 1-2k(k為實(shí)數(shù))有三個(gè)實(shí)數(shù)解,則這三個(gè)實(shí)數(shù)解的和 _ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)K,過點(diǎn)K作圓C:(x-2)2+y2=1的兩條切線,切點(diǎn)為M,N,|MN|=
.
(1)求拋物線E的方程;
(2)設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且
(其中 O為坐標(biāo)原點(diǎn)).
①求證:直線AB必過定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
②過點(diǎn)Q作AB的垂線與拋物線交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com