分析 (1)化簡(jiǎn)f(x)=lnx(2-x),從而再討論二次函數(shù)x(2-x)=-(x-1)2+1的取值范圍,從而求最值;
(2)求導(dǎo)f′(x)=3x2-6x=3x(x-2),從而由導(dǎo)數(shù)確定f(x)在[-1,0]上是增函數(shù),在[0,2]上是減函數(shù),在[2,3]上是增函數(shù);從而求最值.
解答 解:(1)f(x)=lnx+ln(2-x)=lnx(2-x),
x(2-x)=-(x-1)2+1,
∵x∈[$\frac{1}{2}$,1],
∴$\frac{3}{4}$≤-(x-1)2+1≤1,
∴l(xiāng)n$\frac{3}{4}$≤f(x)≤ln1=0;
故最大值為0,最小值為ln$\frac{3}{4}$;
(2)∵f(x)=x3-3x2+2,
∴f′(x)=3x2-6x=3x(x-2),
∴f(x)在[-1,0]上是增函數(shù),在[0,2]上是減函數(shù),在[2,3]上是增函數(shù);
且f(-1)=-1-3+2=-2,f(0)=2,f(2)=8-12+2=-2,f(3)=27-27+2=2;
故最大值為2,最小值為-2.
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)應(yīng)用及復(fù)合函數(shù)的應(yīng)用,同時(shí)考查了導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1或$\frac{1}{2}$ | B. | $\frac{1}{2}或2$ | C. | 1或3 | D. | 1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com