分析 由題意可得f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱(chēng),f($\frac{π}{4}$)=cos$\frac{π}{4}$ω=-1,即即ω=8k+4;再結(jié)合$\frac{π}{3}$-$\frac{π}{4}$<$\frac{T}{2}$=$\frac{π}{ω}$,求得ω的值.
解答 解:函數(shù)f(x)=sin(ωx+$\frac{π}{2}$)=cosωx,
由f($\frac{π}{6}$)=f($\frac{π}{3}$),可得f(x)的圖象關(guān)于直線x=$\frac{\frac{π}{6}+\frac{π}{3}}{2}$=$\frac{π}{4}$對(duì)稱(chēng).
再根據(jù)f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{3}$]上有最小值,可得f($\frac{π}{4}$)=cos$\frac{π}{4}$ω=-1,∴$\frac{π}{4}$ω=2kπ+π,k∈z,即ω=8k+4.
再根據(jù)f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{3}$]上無(wú)最大值,$\frac{π}{3}$-$\frac{π}{4}$<$\frac{T}{2}$=$\frac{π}{ω}$,求得ω<12.
綜合可得ω=4,
故答案為:4.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象特征,正弦函數(shù)的圖象的對(duì)稱(chēng)性、定義域和值域,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 將函數(shù)f(x)=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度可得到g(x)=sin2x的圖象 | |
| B. | 將函數(shù)f(x)=cos(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度可得到g(x)=sin2x的圖象 | |
| C. | 將函數(shù)g(x)=sin2x的圖象向右平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度可得到f(x)=cos(2x+$\frac{π}{3}$)的圖象 | |
| D. | 將函數(shù)g(x)=sin2x的圖象向左平移$\frac{5π}{12}$個(gè)單位長(zhǎng)度可得到f(x)=cos(2x+$\frac{π}{3}$)的圖象 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com