欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知向量$\overrightarrow{AB}$,$\overrightarrow{AC}$夾角為120°,|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=2,$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,若$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,則λ=$\frac{10}{3}$.

分析 根據(jù)向量數(shù)量積的公式,結(jié)合向量垂直的關(guān)系即可得到結(jié)論.

解答 解:∵向量$\overrightarrow{AB}$,$\overrightarrow{AC}$夾角為120°,|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=2,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos120°=5×2×(-$\frac{1}{2}$)=-5,
∵$\overrightarrow{AP}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,
∴($\overrightarrow{AB}$+λ$\overrightarrow{AC}$)•$\overrightarrow{BC}$=($\overrightarrow{AB}$+λ$\overrightarrow{AC}$)($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0,
即$\overrightarrow{AB}•\overrightarrow{AC}$-${\overrightarrow{AB}}^{2}$+λ${\overrightarrow{AC}}^{2}$-λ$\overrightarrow{AC}•\overrightarrow{AB}$=0,
∴-5-25+4λ+5λ=0
解得λ=$\frac{10}{3}$,
故答案為:$\frac{10}{3}$.

點(diǎn)評(píng) 本題主要考查平面向量的基本運(yùn)算,利用向量垂直和數(shù)量積之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}和{bn}的通項(xiàng)公式分別是${a_n}=\frac{{a{n^2}+3}}{{b{n^2}-2n+2}}$,${b_n}=b-a{(\frac{1}{3})^{n-1}}$,其中a、b是實(shí)常數(shù),若$\lim_{n→∞}{a_n}=3,\lim_{n→∞}{b_n}=-\frac{1}{4}$,且a,b,c成等差數(shù)列,則c的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知四邊形ABCD的對(duì)角線相交于一點(diǎn),$\overrightarrow{AC}$=(1,$\sqrt{3}$),$\overrightarrow{BD}$=(-$\sqrt{3}$,1),則$\overrightarrow{AB}$•$\overrightarrow{CD}$的取值范圍是(  )
A.(0,2)B.(0,4]C.[-2,0)D.[-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.現(xiàn)有四個(gè)函數(shù):①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的圖象(部分)如圖,則按照從左到右的順序,圖象對(duì)應(yīng)的函數(shù)序號(hào)正確的一組是( 。
A.①④③②B.①④②③C.④①②③D.③④②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,b=$\sqrt{3}$,B=$\frac{π}{3}$.
(Ⅰ)如果a=2c,求c的值;
(Ⅱ)設(shè)f(A)表示△ABC的周長(zhǎng),求f(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)若F,A分別是橢圓的右焦點(diǎn),右頂點(diǎn),H是直線x=$\frac{{a}^{2}}{c}$與x軸的交點(diǎn),設(shè)$\frac{|AF|}{|OH|}$=f(e)(e為橢圓的離心率),求f(e)的最大值;
(2)若點(diǎn)P(x0,y0)是橢圓上任意一點(diǎn),從原點(diǎn)O作圓(x-x02+(y-y02=$\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}$的兩條切線,且兩條切線的斜率都存在,記為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,BC=1,ccosA+acosC=2bcosB,△ABC的面積S=$\sqrt{3}$,則AC等于( 。
A.$\sqrt{13}$B.4C.3D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若A(xl,y1),B(x2,y2)為平面上兩點(diǎn),則定義A?B=x1y1+x2y2,已知點(diǎn)M($\sqrt{3}$,sinx),N(-1,cosx),設(shè)函數(shù)f(x)=M?N,將f(x)的圖象向左平移φ(φ>0)個(gè)單位長(zhǎng)度后,所得圖象關(guān)于y軸對(duì)稱,則φ的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=2sin(ωx+$\frac{π}{4}$),x∈R,其中ω是正實(shí)數(shù),若函數(shù)f(x)圖象上一個(gè)最高點(diǎn)與其相鄰的一個(gè)最低點(diǎn)的距離為5,則ω的值是(  )
A.$\frac{2π}{5}$B.$\frac{2π}{3}$C.$\frac{π}{5}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案