【題目】在平面直角坐標系
中,已知直線
:
(
為參數(shù)).以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的直角坐標方程;
(2)設點
的直角坐標為
,直線
與曲線
的交點為
,求
的值.
科目:高中數(shù)學 來源: 題型:
【題目】某市2011年至2017年新開樓盤的平均銷售價格(單位:千元/平方米)的統(tǒng)計數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售價格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
附:參考公式:
,
,其中
為樣本平均值。
參考數(shù)據(jù):
,
.
(1)求
關于
的線性回歸方程;
(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價格的變化情況,并預測該市2019年新開樓盤的平均銷售價格。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當
時,求
的圖象在
處的切線方程;
(Ⅱ)若函數(shù)
有兩個不同零點
,
,且
,求證:
,其中
是
的導函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為
(
為參數(shù)),曲線C2的參數(shù)方程為
(
為參數(shù)).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α 與C1,C2 各有一個交點.當 α=0時,這兩個交點間的距離為2,當 α=
時,這兩個交點重合.
(1) 求曲線C1,C2的直角坐標方程
(2) 設當 α=
時,l與C1,C2的交點分別為A1,B1,當 α=-
時,l與C1,C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義區(qū)間
,
,
,
的長度均為
,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,
的長度
. 用
表示不超過
的最大整數(shù),記
,其中
.設
,
,當
時,不等式
解集區(qū)間的長度為
,則
的值為
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體ABCD﹣A1B1C1D1為正方體,則下面結論正確的是( 。
![]()
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.異面直線AD與CB1所成的角為30°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
、
,離心率
,點
在橢圓
上.
(1)求橢圓
的方程;
(2)設過點
且不與坐標軸垂直的直線交橢圓
于
、
兩點,線段
的垂直平分線與
軸交于點
,求點
的橫坐標的取值范圍;
(3)在第(2)問的條件下,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓
:
的焦距為
,離心率為
,其右焦點為
,過點
作直線交橢圓于另一點
.
(1)若
,求
外接圓的方程;
(2)若過點
的直線與橢圓
相交于兩點
、
,設
為
上一點,且滿足
(
為坐標原點),當
時,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的焦點F(1,0),O為坐標原點,A,B是拋物線C上異于 O的兩點.
(1)求拋物線C的方程;
(2)若直線AB過點(8,0),求證:直線OA,OB的斜率之積為定值
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com