【題目】已知橢圓
的左、右焦點分別為
、
,離心率
,點
在橢圓
上.
(1)求橢圓
的方程;
(2)設過點
且不與坐標軸垂直的直線交橢圓
于
、
兩點,線段
的垂直平分線與
軸交于點
,求點
的橫坐標的取值范圍;
(3)在第(2)問的條件下,求
面積的最大值.
【答案】(1)
;(2)
;(3)
.
【解析】試題分析:
(1)由題意求得
,則橢圓方程為
.
(2)將直線方程與橢圓方程聯(lián)立,整理可得
,則
的取值范圍為
.
(3)面積公式:
,求導討論可得
面積的最大值為
.
試題解析:(1)
點
在且橢圓
上,
,
,
,
,
,
橢圓
的方程為
.
(2)設直線
的方程為
,
代入
,整理得
.
直線
過橢圓的右焦點
,
方程有兩個不等實根.
記
,
中點
,
則
,
,
,
垂直平分線
的方程為
.
令
,得
.
,
.
的取值范圍為
.
(3)
,
而
,
由
,可得
.
所以
.
又
,所以
.
所以
的面積為
.
設
,則
.
可知
在區(qū)間
單調遞增,在區(qū)間
單調遞減.
所以,當
時,
有最大值
.
所以,當
時,
的面積有最大值
.
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)
(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的情形?
(2)這6人同時加入6項不同的活動,每項活動限1人,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?
(3)將這6人作為輔導員安排到3項不同的活動中,每項活動至少安排1名輔導員;求丁、戊、己恰好被安排在同一項活動中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為:v=a+blog3
(其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,曲線
,曲線
為參數(shù)), 以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線
的極坐標方程;
(2)若射線
分別交
于
兩點, 求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就2015年畢業(yè)大學生的月收入情況調查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示
.
![]()
(1)求畢業(yè)大學生月收入在
的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析大學生的收入與所學專業(yè)、性別等方面的關系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在
的這段應抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F(1,0),拋物線E:x2=2py的焦點為M.
(1)若過點M的直線l與拋物線C有且只有一個交點,求直線l的方程;
(2)若直線MF與拋物線C交于A,B兩點,求△OAB的面積.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com