已知橢圓的一個頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)到直線
的距離為3。
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓相交于不同的兩點(diǎn)M,N,當(dāng)|AM|=|AN|時,求m的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點(diǎn)在
軸上的雙曲線
的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線
與以點(diǎn)
為圓心,1為半徑的圓相切,又知
的一個焦點(diǎn)與
關(guān)于直線![]()
對稱.
(1)求雙曲線
的方程;
(2)設(shè)直線
與雙曲線
的左支交于
,
兩點(diǎn),另一直線
經(jīng)過
及
的中點(diǎn),求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知直線L:
與拋物線C:
,相交于兩點(diǎn)
,設(shè)點(diǎn)
,
的面積為
.
(Ⅰ)若直線L上與
連線距離為
的點(diǎn)至多存在一個,求
的范圍。
(Ⅱ)若直線L上與
連線的距離為
的點(diǎn)有兩個,分別記為
,且滿足
恒成立,求正數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在
軸上,以兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C的左準(zhǔn)線與
軸的交點(diǎn),過點(diǎn)P的直線
與橢圓C相交于M,N兩點(diǎn),當(dāng)線段MN的中點(diǎn)落在正方形Q內(nèi)(包括邊界)時,求直線
的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
中心在原點(diǎn),焦點(diǎn)坐標(biāo)是
,并且雙曲線的離心率為
。
(1)求雙曲線
的方程;
(2)橢圓
以雙曲線
的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),求橢圓
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
橢圓
的離心率為
分別是左、右焦點(diǎn),過F1的直線與圓
相切,且與橢圓E交于A、B兩點(diǎn)。
(1)當(dāng)
時,求橢圓E的方程;
(2)求弦AB中點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知頂點(diǎn)在原點(diǎn), 焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長為
,求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
橢圓
過點(diǎn)P
,且離心率為
,F(xiàn)為橢圓的右焦點(diǎn),
、
兩點(diǎn)在橢圓
上,且
,定點(diǎn)
(-4,0).![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)
時 ,問:MN與AF是否垂直;并證明你的結(jié)論.
(Ⅲ)當(dāng)
、
兩點(diǎn)在
上運(yùn)動,且
=6
時
, 求直線MN的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com