已知焦點(diǎn)在
軸上的雙曲線
的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線
與以點(diǎn)
為圓心,1為半徑的圓相切,又知
的一個(gè)焦點(diǎn)與
關(guān)于直線![]()
對(duì)稱.
(1)求雙曲線
的方程;
(2)設(shè)直線
與雙曲線
的左支交于
,
兩點(diǎn),另一直線
經(jīng)過(guò)
及
的中點(diǎn),求直線
在
軸上的截距
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B恰好是拋物線
的焦點(diǎn),且離心率等于
,直線
與橢圓C交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點(diǎn)F是否可以為
的垂心?若可以,求出直線
的方程;若不行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)設(shè)橢圓
的左、右焦點(diǎn)分別為
,上頂點(diǎn)為
,在
軸負(fù)半軸上有一點(diǎn)
,滿足
,且
.![]()
(Ⅰ)求橢圓
的離心率;
(Ⅱ)D是過(guò)
三點(diǎn)的圓上的點(diǎn),D到直線
的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)
作斜率為
的直線
與橢圓
交于
兩點(diǎn),在
軸上是否存在點(diǎn)
使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍,如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(I) 已知拋物線
過(guò)焦點(diǎn)
的動(dòng)直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn), 求證:
為定值;
(Ⅱ)由 (Ⅰ) 可知: 過(guò)拋物線的焦點(diǎn)
的動(dòng)直線 l 交拋物線于
兩點(diǎn), 存在定點(diǎn)
, 使得
為定值. 請(qǐng)寫(xiě)出關(guān)于橢圓的類似結(jié)論,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知焦點(diǎn)在
軸上的雙曲線
的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以
點(diǎn)
為圓心,1為半徑的圓相切,又知
的一個(gè)焦點(diǎn)與A關(guān)于直線
對(duì)稱.
(1)求雙曲線
的方程;
(2)設(shè)直線
與雙曲線
的左支交于
,
兩點(diǎn),另一直線
經(jīng)過(guò)
及
的中點(diǎn),求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知橢圓
的左右焦點(diǎn)分別為
、
,短軸兩個(gè)端點(diǎn)為
、
,且四邊形
是邊長(zhǎng)為2的正方形。
(1)求橢圓方程;
(2)若
分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)
滿足
,連接
,交橢圓于點(diǎn)
;證明:
為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)橢圓
的左、右焦點(diǎn)分別為
、
,直線
經(jīng)過(guò)點(diǎn)
與橢圓交于
兩點(diǎn)。
(1)求
的周長(zhǎng);
(2)若
的傾斜角為
,求
的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)到直線
的距離為3。
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓相交于不同的兩點(diǎn)M,N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
上的任意一點(diǎn)到它兩個(gè)焦點(diǎn)
的距離之和為
,且它的焦距為2.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知直線
與橢圓
交于不同兩點(diǎn)
,且線段
的中點(diǎn)
不在圓
內(nèi),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com