欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知函數(shù)f(x)=$\frac{1}{2}$sin2x+cosx,x∈R.
(1)證明:f(x)的最小正周期為2π;
(2)若關(guān)于x的方程f(x)-a=0在區(qū)間[$\frac{π}{6}$,π]上有兩個不同的實數(shù)解,求實數(shù)a的取值范圍.

分析 (1)先說明2π是f(x)的一個周期,再用反證法說法,不存在比2π小的f(x)的周期,可得結(jié)論;
(2)若關(guān)于x的方程f(x)-a=0在區(qū)間[$\frac{π}{6}$,π]上有兩個不同的實數(shù)解,則函數(shù)f(x)=$\frac{1}{2}$sin2x+cosx與y=a的圖象在在區(qū)間[$\frac{π}{6}$,π]上有兩個交點,進而可得答案.

解答 證明:(1)∵f(x)=$\frac{1}{2}$sin2x+cosx,
∴f(x+2π)=$\frac{1}{2}$sin2(x+2π)+cos(x+2π)=$\frac{1}{2}$sin2x+cosx=f(x),
即2π是f(x)的一個周期,
假設(shè)f(x)的最小正周期不是2π,
則存在T∈(0,2π)使f(x+T)=f(x)恒成立,
即$\frac{1}{2}$sin2(x+T)+cos(x+T)=$\frac{1}{2}$sin2x+cosx恒成立,
令x=0,則$\frac{1}{2}$sin2T+cosT=1恒成立,不存在滿足條件的T值,
故假設(shè)不成立,
故f(x)的最小正周期為2π;
(2)若關(guān)于x的方程f(x)-a=0在區(qū)間[$\frac{π}{6}$,π]上有兩個不同的實數(shù)解,
則函數(shù)f(x)=$\frac{1}{2}$sin2x+cosx與y=a的圖象在在區(qū)間[$\frac{π}{6}$,π]上有兩個交點,
由f′(x)=cos2x-sinx=-2sin2x-sinx+1,
當(dāng)x∈[$\frac{π}{6}$,$\frac{5π}{6}$]時,sinx$≥\frac{1}{2}$,f′(x)≤0,函數(shù)f(x)為減函數(shù),
當(dāng)x∈[$\frac{5π}{6}$,π]時,sinx$≤\frac{1}{2}$,f′(x)≥0,函數(shù)f(x)為增函數(shù),
又∵f($\frac{π}{6}$)=$\frac{3\sqrt{3}}{4}$,f($\frac{5π}{6}$)=-$\frac{3\sqrt{3}}{4}$,f(π)=-1,
故a∈(-$\frac{3\sqrt{3}}{4}$,-1]

點評 本題考查的知識點是三角函數(shù)中的恒等變換應(yīng)用,方程根與函數(shù)零點的關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=2sin(2x+$\frac{π}{6}$).
(1)求函數(shù)的對稱軸方程;
(2)求x∈[$\frac{π}{12}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點B(3,-2),$\overrightarrow{AB}$=(-2,4),求點A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知下列三角函數(shù),其中函數(shù)值為負的有( 。
①sin(-680°);②cos(-730°);③tan(320°);④sin(cos2)
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(1,x),記f(x)為向量$\overrightarrow$在$\overrightarrow{a}$上投影的數(shù)量,已知x∈(-π,π),則f(x)為( 。
A.既是奇函數(shù)又是偶函數(shù)B.偶函數(shù),且有兩個零點
C.奇函數(shù),且有三個零點D.偶函數(shù),且只有一個極值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,OA=$\overrightarrow{a}$,OB=$\overrightarrow$,OC=3$\overrightarrow{a}$-2$\overrightarrow$,求證:A,B,C三點在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合A={x∈R|sinx=x}的子集個數(shù)為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知(1ncosx)′=-tanx,則由曲線y=sin2x與y=tanx(-$\frac{π}{2}$<x<$\frac{π}{2}$)圍成的封閉圖形的面積為1-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>b>0),A1,A2是雙曲線實軸的兩個端點,MN是垂直于實軸所在直線的弦的兩個端點,則A1M與A2N交點的軌跡方程是( 。
A.$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1B.$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1C.$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1D.$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1

查看答案和解析>>

同步練習(xí)冊答案