欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知三角形的三邊a,b,c,三角形的重心到外接圓的距離為d,外接圓半徑為R,求證:a2+b2+c2+9d2=9R2

分析 以△ABC的外心為原點建立坐標系,可令A、B、C的坐標依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).令AB中點為D、△ABC的重心為G(m,n),求出m,n,進而可證明a2+b2+c2+9d2=9R2

解答 證明:以△ABC的外心為原點建立坐標系,顯然,△ABC的外接圓方程是:x2+y2=R2
∴可令A、B、C的坐標依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).
令AB中點為D、△ABC的重心為G(m,n).
由中點坐標公式,得D的坐標為($\frac{1}{2}$R(cosα+cosβ),$\frac{1}{2}$R(sinα+sinβ)).
∵$\frac{CG}{DG}$=2,
∴有m=$\frac{Rcosγ+2R•\frac{1}{2}(cosα+cosβ)}{1+2}$=$\frac{1}{3}$R(cosα+cosβ+cosγ),n=$\frac{1}{3}$R(sinα+sinβ+sinγ).
于是:
a2=(Rcosβ-Rcosγ)2+(Rsinβ-Rsinγ)2=R2(2-2cosβcosγ-2sinβsinγ)
b2=(Rcosα-Rcosγ)2+(Rsinα-Rsinγ)2=R2(2-2cosαcosγ-2sinαsinγ),
c2=(Rcosα-Rcosβ)2+(Rsinα-Rsinβ)2=R2(2-2cosαcosβ-2sinαsinβ).
9d2=9[(m-0)2+(n-0)2]=9{[$\frac{1}{3}$R(cosα+cosβ+cosγ)-0]2+[$\frac{1}{3}$R(sinα+sinβ+sinγ)-0]2}
=R2[(cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ)2]
=R2(3+2cosαcosβ+2cosβcosγ+2cosαcosγ+2sinαsinβ+2sinβsinγ+2sinαsinγ).
∴a2+b2+c2+9d2=9R2

點評 本題考查綜合法的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.對于使f(x)≥N成立的所有常數(shù)N中,我們把N的最大值叫作f(x)的下確界.若a,b∈(0,+∞),且a+b=2,則$\frac{1}{3a}$+$\frac{3}$的下確界為( 。
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=$\frac{1}{4}$x4+$\frac{1}{2}$ax2+bx+d的導函數(shù)有三個零點,分別為x1,x2,x3且滿足:x1<-2,x2=2,x3>2,則實數(shù)a的取值范圍是( 。
A.(-∞,-1)B.(-∞,-3)C.(-7,+∞)D.(-∞,-12)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知b+c=12,C=120°,sinB=$\frac{{5\sqrt{3}}}{14}$,則cosA+cosB的值為$\frac{12}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為$\frac{28}{3}π$cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{-{x}^{2}+bx+c,x≤0}\end{array}\right.$滿足f(0)=1,且f(0)+2f(-1)=0,求函數(shù)g(x)=f(x)+x的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.圓周上有2n個等分點(n>2),任取3點可得一個三角形,恰為直角三角形的個數(shù)為2n(n-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)y=f(x)(x∈R)是奇函數(shù),其部分圖象如圖所示,則在(-2,0)上與函數(shù)
f(x)的單調(diào)性相同的是(  )
A.y=x2+1B.y=log2|x|
C.$y=\left\{\begin{array}{l}{e^x}(x≥0)\\{e^{-x}}(x<0)\end{array}\right.$D.y=cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若對任意正數(shù)x,不等式$\frac{1}{{x}^{2}+1}$≤$\frac{a}{x}$恒成立,則實數(shù)a的最小值為( 。
A.1B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習冊答案