欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知F1,F(xiàn)2是橢圓的兩個焦點,滿足MF1⊥MF2的點M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是(0,$\frac{\sqrt{2}}{2}$).

分析 設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),由已知得M點的軌跡是以原點O為圓心,半焦距c為半徑的圓,該圓內(nèi)含于橢圓,由此能求出橢圓離心率的取值范圍.

解答 解:設(shè)橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),得F1(-c,0),F(xiàn)2(c,0)
∵MF1⊥MF2
∴M點的軌跡是以原點O為圓心,半焦距c為半徑的圓.
又∵M點總在橢圓內(nèi)部,
∴該圓內(nèi)含于橢圓,可得c<b,
平方得c2<b2,即c2<a2-c2
∴e2=$\frac{{c}^{2}}{{a}^{2}}$<$\frac{1}{2}$,可得離心率e滿足:0<e<$\frac{\sqrt{2}}{2}$.
∴橢圓離心率的取值范圍是(0,$\frac{\sqrt{2}}{2}$).
故答案為:(0,$\frac{\sqrt{2}}{2}$).

點評 本題考查橢圓的離心率的取值范圍的求法,是中檔題,解題時要認真審題,注意橢圓、圓的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.手機密碼通常由六位數(shù)字組成(每位數(shù)字都可以從0~9這十個數(shù)字中任意選。,問可以設(shè)置多少個不同的密碼?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={y|y=($\frac{1}{2}$)x,x≥-1},B={y|y=ex+1,x≤0},則下列結(jié)論正確的是( 。
A.A=BB.A∪B=RC.A∩(∁RB)=∅D.B∩(∁RA)=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}$ax2-bx,設(shè)h(x)=f(x)-g(x).
(1)若g(2)=2,討論函數(shù)h(x)的單調(diào)性;
(2)若函數(shù)g(x)是關(guān)于x的一次函數(shù),且函數(shù)h(x)有兩個不同的零點x1,x2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.己知函數(shù)f(x)=ax+$\frac{a}{x}$-3lnx.
(1)當a=2時,求f(x)的最小值;
(2)若f(x)在[1,e]上為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(3)若存在實常數(shù)k和b,使得函數(shù)f(x)和g(x)對各自定義域上的任意實數(shù)x分別滿足:f(x)≥kx+b和g(x)≤kx+b成立,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.當a=0時,令g(x)=$\frac{-2e}{3}$f(x)(e為自然對數(shù)的底數(shù)),h(x)=x2(x∈R),則函數(shù)g(x)和h(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.以橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的中心為頂點,左焦點為焦點的拋物線的標準方程是( 。
A.x2=8yB.y2=16xC.x2=-8yD.y2=-16x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知橢圓的兩焦點F1(-1,0)、F2(1,0),P是橢圓上一點且2|F1F2|=|PF1|+|PF2|,則此橢圓的標準方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某同學利用寒假到一家商場勤工儉學,該商場向他提供了三種付酬方案:第一種,每天支付38元;第二種,第一天付5元,第二天付10元,第三天付15元,以此類推;第三種,第一天付0.4元,以后每天比前一天翻一番(即增加一倍).若該同學計劃工作10天,請你幫他做出最有利的選擇,給出解釋.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2+tcosα\\ y=1+tsinα\end{array}\right.\;\;\;(t$為參數(shù),0<α<π),曲線C的極坐標方程為ρsin2θ=4cosθ.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設(shè)點P的直角坐標為P(2,1),直線l與曲線C相交于A、B兩點,并且$|PA|•|PB|=\frac{28}{3}$,求tanα的值.

查看答案和解析>>

同步練習冊答案