欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的實軸長為4$\sqrt{2}$,虛軸的一個端點與拋物線x2=2py(p>0)的焦點重合,直線y=kx-1與拋物線相切且與雙曲線的一條漸近線平行,則p=4.

分析 求得拋物線的焦點,可得b=$\frac{p}{2}$,①,由漸近線方程可得k=$\frac{2\sqrt{2}}$,②,將直線方程代入拋物線方程,運用相切的條件,可得p=$\frac{2}{{k}^{2}}$,③解方程即可得到p=4.

解答 解:由題意可得a=2$\sqrt{2}$,
拋物線x2=2py(p>0)的焦點為(0,$\frac{p}{2}$),
即有b=$\frac{p}{2}$,①
由題意可得k=$\frac{a}$=$\frac{2\sqrt{2}}$,②
直線y=kx-1代入拋物線方程,可得
x2-2pkx+2p=0,
由判別式為0,即4p2k2=8p,
即為p=$\frac{2}{{k}^{2}}$,③
由①②③,解得p=4,b=2.
故答案為:4.

點評 本題考查雙曲線和拋物線的方程和性質(zhì),考查直線和拋物線的位置關(guān)系,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知點F(0,p),直線l:y=-p(其中p為常數(shù),且p>0),M為平面內(nèi)的動點,過M作l的垂線,垂足為N,且$\overrightarrow{NM}•\overrightarrow{NF}$=$\overrightarrow{FM}•\overrightarrow{FN}$.
(1)求動點M的軌跡C的方程;
(2)設(shè)Q是l上的任意一點,過Q作軌跡C的切線,切點為A、B.
①求證:A、Q、B三點的橫坐標成等差數(shù)列;
②若Q(-4,-p),AB=20,求P的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在正方體ABCD-A1B1C1D1中,截面BC1D內(nèi)的動點P到平面ABCD的距離到頂點C1的距離相等,則動點P的軌跡的離心率為( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.半徑為5的球面上有A、B、C、D四點,若AB=6,CD=8,則四面體ABCD的體積的最大值是56.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點,P是雙曲線右支上一點,若以F2圓心,半徑為a的圓與直線PF1相切于P,則雙曲線的漸近線為( 。
A.y=±$\frac{\sqrt{6}}{3}$xB.y=±$\frac{\sqrt{10}}{2}$xC.y=±$\frac{\sqrt{10}}{5}$xD.y=±$\frac{\sqrt{6}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,AB=AC,∠BAC=90°,△BCD中,∠CBD=90°,∠BDC=60°,BC=6,△ABC和△BCD相互垂直.
(1)求證:平面ABD⊥平面ACD.
(2)求二面角A-CD-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知定義y=log(x+1)F(x,y),若e<x<y,證明:F(x-1,y)>F(y-1,x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面是以O(shè)為中心的正方形,PO⊥底面ABCD,E為BC邊的中點,PE⊥PA.
(1)求證:平面PAE⊥平面PAD;
(2)求直線AC與平面PAD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=$\frac{1}{2}$x2-tx+3lnx,g(x)=$\frac{2x+t}{{x}^{2}-3}$,且a、b為函數(shù)f(x)的極值點(0<a<b)
(Ⅰ)求證:a$<\sqrt{3}<b$;
(Ⅱ)判斷函數(shù)g(x)在區(qū)間(-b,-$\sqrt{3}$),(-$\sqrt{3}$,-a)上的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)若曲線g(x)在x=1處的切線斜率為-4,且方程g(x)-m=0(x≤0)有兩個不等的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案