欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
9.如圖,已知在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ≤$\frac{π}{2}$),則四棱錐P-ABCD的體積V的取值范圍是( 。
A.[$\frac{\sqrt{2}}{6}$,$\frac{1}{3}$)B.($\frac{\sqrt{2}}{12}$,$\frac{1}{6}$]C.($\frac{\sqrt{2}}{6}$,$\frac{1}{3}$]D.[$\frac{\sqrt{2}}{12}$,$\frac{1}{6}$)

分析 先根據條件得到四邊形ABCD的面積S=sinθ,由余弦定理可求得AC=$\sqrt{2-2cosθ}$,即可得到PA,進而表示出四棱錐P-ABCD的體積,整理后再借助于三角函數的取值范圍即可解題.

解答 解:S菱形ABCD=$2•\frac{1}{2}AB•BC•sinθ$=sinθ,
在△ABC中,由余弦定理得AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BCcosθ}$=$\sqrt{2-2cosθ}$.
∵PA•AC=1,∴PA=$\frac{1}{\sqrt{2-2cosθ}}$.
∴四棱錐P-ABCD的體積V=$\frac{1}{3}{S}_{菱形ABCD}•PA$=$\frac{\sqrt{2}}{6}×$$\sqrt{\frac{si{n}^{2}θ}{1-cosθ}}$=$\frac{\sqrt{2}}{6}×\sqrt{1+cosθ}$.
∵0<θ≤$\frac{π}{2}$,∴0≤cosθ<1.∴$\frac{\sqrt{2}}{6}$≤V<$\frac{1}{3}$.
故選:A.

點評 本題考查了余弦定理,三角函數的最值,棱錐的體積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

19.如圖,在等腰直角三角形ABC,∠C=90°,點D在線段AB上,且AD=$\frac{1}{3}$AB,延長線段CD至點E,使DE=CD,求cos∠CBE.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.在1,2,3,4四個數中隨機地抽取一個數記為a,再在剩余的三個數中隨機地抽取一個數記為b,則“$\frac{a}$不是整數”的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.如圖,梯形ABCD中,點E、F分別在AB、CD上,EF∥AD,假設EF作上下平行移動.
(1)如果$\frac{AE}{EB}$=$\frac{1}{2}$,求證:3EF=BC+2AD;
(2)如果$\frac{AE}{EB}$=$\frac{2}{3}$,求證:5EF=2BC+3AD.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,在三棱錐A-BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°,點E,F分別是AC,AD的中點.
(1)求證:EF∥平面BCD;
(2)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.如圖,為了測量河對岸電視塔CD的高度,小王在點A處測得塔頂D仰角為30°,塔底C與A的連線同河岸成15°角,小王向前走了1200m到達M處,測得塔底C與M的連線同河岸成60°角,則電視塔CD的高度為600$\sqrt{2}$m.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若將f(x)的圖象上所有點向右平移$\frac{π}{12}$個單位得到函數g(x)的圖象,則函數g(x)的單調增區(qū)間為( 。
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$,k∈Z
C.$[kπ-\frac{π}{12},kπ+\frac{π}{12}]$,k∈ZD.$[kπ-\frac{7π}{12},kπ-\frac{π}{12}]$,k∈Z

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知復數z=1+i,則z4=( 。
A.-4iB.4iC.-4D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.設橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{2}{3}\sqrt{2}$,且內切于圓x2+y2=9.
(1)求橢圓C的方程;
(2)過點Q(1,0)作直線l(不與x軸垂直)與該橢圓交于M、N兩點,與y軸交于點R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,試判斷λ+μ是否為定值,并說明理由.

查看答案和解析>>

同步練習冊答案