欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.如圖,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=$\frac{1}{2}$AP=2,D是AP的中點,E,F(xiàn),G分別為PC、PD、CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD.

(1)求證:平面PCD⊥平面PAD;
(2)求面GEF與面EFD所成銳二面角的大。

分析 (1)由PD⊥平面ABCD,可得PD⊥CD,又CD⊥AD,可得CD⊥平面PAD,利用面面垂直的判定定理即可證明;
(2)如圖以D為原點,以DA,DC,DP分別為x,y,z軸建立空間直角坐標系D-xyz.不妨設(shè)AB=BC=$\frac{1}{2}AP$=2.則G(1,2,0),E(0,1,1),F(xiàn)(0,0,1),
$\overrightarrow{EF}$=(0,-1,0),$\overrightarrow{EG}$=(1,1,-1).設(shè)平面EFG的法向量為$\overrightarrow{n}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=0}\\{\overrightarrow{n}•\overrightarrow{EG}=0}\end{array}\right.$,可得$\overrightarrow{n}$,利用法向量的夾角即可得出.

解答 (1)證明:∵PD⊥平面ABCD,
∴PD⊥CD,
∵CD⊥AD,PD∩AD=D.
∴CD⊥平面PAD,
∵CD?平面PCD,
∴平面PCD⊥平面PAD.
(2)解:如圖以D為原點,以DA,DC,DP分別為x,y,z軸建立空間直角坐標系D-xyz.
不妨設(shè)AB=BC=$\frac{1}{2}AP$=2.則G(1,2,0),E(0,1,1),F(xiàn)(0,0,1),
$\overrightarrow{EF}$=(0,-1,0),$\overrightarrow{EG}$=(1,1,-1).
設(shè)平面EFG的法向量為$\overrightarrow{n}$=(x,y,z),
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=0}\\{\overrightarrow{n}•\overrightarrow{EG}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{-y=0}\\{x+y-z=0}\end{array}\right.$,令x=1,解得z=1,y=0,
∴$\overrightarrow{n}$=(1,0,1)為平面PCD的一個法向量,
$\overrightarrow{DA}$=(1,0,0).
∴$cos<\overrightarrow{DA},\overrightarrow{n}>=\frac{\overrightarrow{DA}•\overrightarrow{n}}{|\overrightarrow{DA}||\overrightarrow{n}|}=\frac{2}{2\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴面GEF與面EFD所成銳二面角的大小45°.

點評 本題考查了線面面面垂直的判定與性質(zhì)定理,考查了通過建立空間直角坐標系利用平面的法向量的夾角得出二面角的方法,考查了空間想象能力,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四棱柱ABCD-A1B1C1D1,側(cè)棱AA1⊥底面ABCD,底面ABCD中,AB⊥AD,BC∥AD,AB=2,AD=5,BC=1,側(cè)棱AA1=4.
(1)求證:CD⊥平面AA1C
(2)若E是AA1上一點,試確定E點位置使EB∥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PA⊥底面ABCD,PA=AB,點E是PD的中點,作EF⊥PC交PC于F.
(Ⅰ)求證:PC⊥平面AEF;
(Ⅱ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點,PA=PD=$\sqrt{2}$,AD=PB=2.
( I)求證:QB⊥PD;
(Ⅱ)點M在線段PC上,且QM⊥PC,求M-QB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若AB1=$\sqrt{6}$,求四棱錐A-BB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a≥0,函數(shù)f(x)=(x2-2ax)ex在[-1,1]是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在曲線y=x2(x≥0)上某一點A處作一條切線使之與曲線以及x軸圍成的面積為$\frac{1}{12}$,則以A為切點的切線方程為
( 。
A.y=$\frac{3}{2}$x-$\frac{1}{2}$B.y=2x-1C.y=2x+1D.y=$\frac{1}{2}$x+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列中,首項a1=21,公差d=-4,求|a1|+|a2|+…|ak|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在橢圓$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1內(nèi),通過點M(1,1)且被這點平分的弦所在的直線方程為( 。
A.9x-16y+7=0B.16x+9y-25=0C.9x+16y-25=0D.16x-9y-7=0

查看答案和解析>>

同步練習冊答案