欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知復(fù)數(shù)z是一元二次方程x2-2x+2=0的一個(gè)根,則|z|的值為(  )
A.1B.$\sqrt{2}$C.0D.2

分析 根據(jù)題意,設(shè)復(fù)數(shù)z=a+bi,把z代入x2-2x+2=0中求出a、b的值,再計(jì)算|z|.

解答 解:設(shè)復(fù)數(shù)z=a+bi,a、b∈R,i是虛數(shù)單位,
由z是x2-2x+2=0的復(fù)數(shù)根,
∴(a+bi)2-2(a+bi)+2=0,
即(a2-b2-2a+2)+(2ab-2b)i=0,
∴$\left\{\begin{array}{l}{{a}^{2}{-b}^{2}-2a+2=0}\\{2ab-2b=0}\end{array}\right.$,
解得a=1,b=±1,
∴z=1±i,
∴|z|=$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的代數(shù)運(yùn)算和模長(zhǎng)公式問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$則f(f($\frac{π}{4}$))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=5,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$⊥($\overrightarrow$-$\overrightarrow{a}$),則$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)是F,左、右頂點(diǎn)分別是A1,A2,過(guò)F做x軸的垂線交雙曲線于B,C兩點(diǎn),若A1B⊥A2C,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.共享單車(chē)是指企業(yè)與政府合作,在公共服務(wù)區(qū)等地方提供自行車(chē)單車(chē)共享服務(wù),現(xiàn)從6輛黃色共享單車(chē)和4輛藍(lán)色共享單車(chē)中任取4輛進(jìn)行檢查,則至少有兩個(gè)藍(lán)色共享單車(chē)的取法種數(shù)是115.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.《九章算術(shù)》中有這樣一個(gè)問(wèn)題:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”大意為:有個(gè)圓柱形木頭,埋在墻壁中(如圖所示),不知道其大小,用鋸沿著面AB鋸掉裸露在外面的木頭,鋸口CD深1寸,鋸道AB長(zhǎng)度為1尺,問(wèn)這塊圓柱形木料的直徑是26寸.(注:1尺=10寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)當(dāng)m為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(2)已知方程表示的直線l在x軸上的截距為-3,求實(shí)數(shù)m的值;
(3)若方程表示的直線l的傾斜角是45°,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ=8cosθ+6sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=at+1}\end{array}\right.$(t為參數(shù),a為實(shí)常數(shù)).
(1)若a=-1,求直線l與圓C的所有公共點(diǎn);
(2)若直線l與圓C相交,截得弦長(zhǎng)為2$\sqrt{7}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=\frac{3}{2}$,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$±\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案