欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.如圖,在直三棱柱ABC-A1B1C1中,BC=CC1=2a,∠CAB=90°,AC=$\sqrt{2}$a.則點B到平面AB1C的距離為$\frac{{2\sqrt{3}a}}{3}$.

分析 可采用等積法,只要求出三角形AB1C的面積,則B到面AB1C的距離即可求得.

解答 解:∵直三棱柱ABC-A1B1C1中,BC=2a,∠CAB=90°,AC=$\sqrt{2}$a,
∴AB=$\sqrt{2}$a,
△AB1C中,AB1=$\sqrt{6}$a,B1C=2$\sqrt{2}$a,AC=$\sqrt{2}$a,∴${S}_{△A{B}_{1}C}$=$\frac{1}{2}×\sqrt{2}a×\sqrt{6}a$=$\sqrt{3}{a}^{2}$,
設(shè)點B到平面AB1C的距離為h.
由等體積可得$\frac{1}{3}×\frac{1}{2}×\sqrt{2}a×\sqrt{2}a×2a=\frac{1}{3}×\sqrt{3}{a}^{2}h$,
解得h=$\frac{{2\sqrt{3}a}}{3}$.
故答案為:$\frac{{2\sqrt{3}a}}{3}$.

點評 本題考查了利用等體積法求空間距離的方法,一般是構(gòu)造三棱錐,通過變換頂點的方法來解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在多面體ABCDEF中,正方形ADEF與梯形ABCD所在平面互相垂直,AB∥CD,AD⊥CD,AB=AD=1,CD=2,M、N分別為EC和BD的中點.
(Ⅰ)求證:BC⊥平面BDE;
(Ⅱ)求直線MN與平面BMC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知F1、F2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1 (a>b>0)的左右焦點,P是橢圓上任一點,從焦點F2引∠F1PF2的外角平分線的垂線,垂足為Q,則Q點軌跡為以原點為圓心,a為半徑的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在正方體ABCD-A1B1C1D1中,O是底面ABCD對角線的交點.
(Ⅰ)求證:BD⊥平面ACC1A1;
(Ⅱ)求直線BC與平面ACC1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在棱錐A-BCDE中,平面ABE上平面BCDE,BE⊥AE,BE⊥ED,ED∥BC,BC=BE=EA=2,DE=1.
(I)若F為AB中點,求證:EF∥平面ADC;
(Ⅱ)若$\overrightarrow{AM}$=$\frac{5}{6}$$\overrightarrow{AC}$,求BM與平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,PD=AD=DC=2AB,則異面直線PC與AB所成角的大小為$\frac{π}{4}$;直線PB與平面PDC所成角的正弦值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中點.
(Ⅰ)求證:AM∥平面PCD;
(Ⅱ)設(shè)點N是線段CD上一動點,且DN=λDC,當(dāng)直線MN與平面PAB所成的角最大時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一輛郵車每天從A地往B地運送郵件,沿途(包括A,B)共有8站,從A地出發(fā)時,裝上發(fā)往后面7站的郵件各一個,到達后面各站后卸下前面發(fā)往該站的郵件,并裝上發(fā)往后面各站的郵件各一個,試寫出郵車在各站裝卸完畢后剩余郵件個數(shù)所成的數(shù)列,畫出該數(shù)列的圖象,并判斷該數(shù)列的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實數(shù)a、b、c滿足a+b+c=2,a2+b2+c2=4,且a>b>c,不等式ln(a2+2a)-a≥M恒成立,則M的最大值是ln$\frac{16}{9}$-$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案