欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知x=$\frac{π}{6}$是函數(shù)f(x)=(asinx+cosx)cosx-$\frac{1}{2}$圖象的一條對稱軸.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)作出函數(shù)f(x)在x∈[0,π]上的圖象簡圖.

分析 (1)化簡函數(shù)f(x),求出a的值,得出f(x)的解析式,從而求出f(x)的單調(diào)增區(qū)間;
(2)利用列表、描點、連線,畫出函數(shù)f(x)在x∈[0,π]上的圖象即可.

解答 解:(1)∵f(x)=(asinx+cosx)cosx-$\frac{1}{2}$
=asinxcosx+cos2x-$\frac{1}{2}$
=$\frac{1}{2}$asin2x+$\frac{1}{2}$cos2x,
且x=$\frac{π}{6}$是函數(shù)f(x)圖象的一條對稱軸,
所以f(0)=f($\frac{π}{3}$),
即$\frac{1}{2}$=$\frac{a}{2}$sin2($\frac{π}{3}$)+$\frac{1}{2}$cos2($\frac{π}{3}$),
解得a=$\sqrt{3}$,
所以f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$);
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
則-$\frac{2π}{3}$+2kπ≤2x≤$\frac{π}{3}$+2kπ,k∈Z,
解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z;
即函數(shù)f(x)的增區(qū)間為[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z; …(5分)
(2)列表如下,

x0$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$π
2x+$\frac{π}{6}$$\frac{π}{6}$$\frac{π}{2}$π$\frac{3π}{2}$$\frac{13π}{6}$
f(x)$\frac{1}{2}$10-10$\frac{1}{2}$
畫出函數(shù)f(x)在x∈[0,π]上的圖象如圖所示.…(10分)

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了五點法畫正弦函數(shù)圖象的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$($\overrightarrow{a}$,$\overrightarrow$為非零向量),且∠AOB=90°,則|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow}{|\overrightarrow|}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}中,an=11-5n,則數(shù)列{|an|}的前15項和為( 。
A.442B.449C.428D.421

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正項等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{5}{n}$的最小值為(  )
A.$1+\frac{{\sqrt{5}}}{3}$B.$\frac{7}{4}$C.2D.$\frac{11}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線2x+3y-6=0交x、y軸于A、B兩點,試在直線y=-x上求一點P,使|PA|+|PB|最小,則P點的坐標(biāo)是(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=$\frac{ln(x+1)}{\sqrt{-{x}^{2}-3x+4}}$的定義域為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.不等式$\frac{3}{x+1}≥1$的解集是(-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且A,B,C成等差數(shù)列.命題p:“a,b,c成等比數(shù)列”;命題q:“△ABC是等邊三角形”.則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}中,a1=2,a2n=an+1,a2n+1=n-an,則{an}的前100項和為( 。
A.1250B.1276C.1289D.1300

查看答案和解析>>

同步練習(xí)冊答案