分析 (1)利用導數(shù)判斷函數(shù)的單調(diào)性即可;
(2)利用(Ⅰ)的結(jié)論,討論兩根與1的大小關(guān)系,判斷函數(shù)在[0,1]時的單調(diào)性,得出取最值時的x的取值.
解答 解:(1)f(x)的定義域為(-∞,+∞),f′(x)=1+a-2x-3x2,
由f′(x)=0,得x1=$\frac{-1-\sqrt{4+3a}}{3}$,x2=$\frac{-1+\sqrt{4+3a}}{3}$,x1<x2,
∴由f′(x)<0得x<$\frac{-1-\sqrt{4+3a}}{3}$,x>$\frac{-1+\sqrt{4+3a}}{3}$;
由f′(x)>0得$\frac{-1-\sqrt{4+3a}}{3}$<x<$\frac{-1+\sqrt{4+3a}}{3}$;
故f(x)在(-∞,$\frac{-1-\sqrt{4+3a}}{3}$)和($\frac{-1+\sqrt{4+3a}}{3}$,+∞)單調(diào)遞減,
在($\frac{-1-\sqrt{4+3a}}{3}$,$\frac{-1+\sqrt{4+3a}}{3}$)上單調(diào)遞增.
(2)∵a>0,∴x1<0,x2>0,
①當a≥4時,x2≥1,由(Ⅰ)知,f(x)在[0,1]上單調(diào)遞增,
∴f(x)在x=0和x=1處分別取得最小值和最大值.
②當0<a<4時,x2<1,由(Ⅰ)知,f(x)在[0,x2]單調(diào)遞增,在[x2,1]上單調(diào)遞減,
因此f(x)在x=x2=$\frac{-1+\sqrt{4+3a}}{3}$處取得最大值,又f(0)=1,f(1)=a,
∴當0<a<1時,f(x)在x=1處取得最小值;
當a=1時,f(x)在x=0和x=1處取得最小值;
當1<a<4時,f(x)在x=0處取得最小值.
點評 本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性及最值的知識,考查學生分類討論思想的運用能力,屬中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com