| A. | $(-\frac{2}{3},1)$ | B. | $[{-\frac{2}{3},-\frac{1}{2}})∪({\frac{1}{2},\frac{2}{3}}]$ | C. | $({-\frac{2}{3},\frac{2}{3}})$ | D. | $({-\frac{2}{3},\frac{1}{3}})∪(\frac{1}{2},\frac{2}{3})$ |
分析 作出函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(x-1)}^3}(x≥1)}\\{{{(1-x)}^3}({x<1})}\end{array}}$的圖象,從而可得|x-1|<|ax|,再作出函數(shù)y=|x-1|與函數(shù)y=|ax|的圖象,從而由排除法確定a的取值范圍.
解答 解:由題意,
作出函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(x-1)}^3}(x≥1)}\\{{{(1-x)}^3}({x<1})}\end{array}}$的圖象如下,![]()
故不等式f(x)<f(ax+1)可化為|x-1|<|ax+1-1|,
即|x-1|<|ax|;
作函數(shù)y=|x-1|與函數(shù)y=|ax|的圖象如下,![]()
結合圖象可得,實數(shù)a的取值范圍應該關于原點對稱,
故排除A、D,
當a=0時,不等式f(x)<f(ax+1)的解集中有且僅有一個整數(shù)1,故不正確;
故排除C;
故選:B.
點評 本題考查了分段函數(shù)的應用及學生的作圖能力,同時考查了數(shù)形結合的思想應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 15° | B. | 30° | C. | 45° | D. | 60° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{{1+\sqrt{3}}}{2}$ | B. | -$\frac{{1+\sqrt{3}}}{2}$ | C. | $\frac{{1+\sqrt{2}}}{2}$ | D. | -$\frac{{1+\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{3}$ | B. | -2$\sqrt{3}$ | C. | $\frac{32}{3}$ | D. | $\frac{35}{3}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com