分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{{ρ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$即可化簡.
(2)由(1)可得:$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$=$\frac{4sinα}{\frac{8}{sinα}}$•$\frac{4sin(α+\frac{π}{2})}{\frac{8}{sin(α+\frac{π}{2})}}$=$\frac{1}{16}si{n}^{2}2α$,即可得出.
解答 解:(1)直線l的方程是y=8,可得極坐標方程:ρsinθ=8.
圓C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ為參數(shù)),化為直角坐標方程:x2+(y-2)2=4,展開為x2+y2-4y=0,化為極坐標方程:ρ2-4ρsinθ=0,即ρ=4sinθ.
(2)由(1)可得:$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$=$\frac{4sinα}{\frac{8}{sinα}}$•$\frac{4sin(α+\frac{π}{2})}{\frac{8}{sin(α+\frac{π}{2})}}$=$\frac{1}{4}$sin2αcos2α=$\frac{1}{16}si{n}^{2}2α$≤$\frac{1}{16}$,當且僅當α=$\frac{π}{4}$時取等號.
∴$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值為$\frac{1}{16}$.
(3)設(shè)直角三角形OMN的內(nèi)切圓圓心C(x,y),半徑為r.
則8-y=r,$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{2}$r,
∴$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{2}$(8-y),
∴(y-16)2-x2=128(0<y<8).
∴三角形OMN的內(nèi)切圓圓心的軌跡方程為(y-16)2-x2=128(0<y<8).
點評 本題考查了極坐標方程與直角坐標方程的互化、直角三角形的性質(zhì)、三角形內(nèi)切圓的方程、參數(shù)方程的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
| 售價 | 16 | 13 | 9.5 | 7 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com