分析 首先把二次函數(shù)的一般式轉(zhuǎn)化成頂點(diǎn)式,然后根據(jù)不定對(duì)稱軸和定區(qū)間的關(guān)系分三種情況進(jìn)行討論得到具體的結(jié)果.
解答 解:函數(shù)f(x)=x2-(3a+2)x+1=(x-$\frac{3a+2}{2}$)2+$\frac{-9{a}^{2}-12a}{4}$
則:函數(shù)為開口方向向上,對(duì)稱軸為x=$\frac{3a+2}{2}$的拋物線
①當(dāng)$\frac{3a+2}{2}$≥0,即a≥$-\frac{2}{3}$時(shí),函數(shù)在區(qū)間[-1,0]上單調(diào)遞減,f(x)min=f(0)=1,
②當(dāng)-1<$\frac{3a+2}{2}$<0,即-$\frac{4}{3}$<a<$-\frac{2}{3}$時(shí),函數(shù)在區(qū)間[-1,$\frac{3a+2}{2}$]上單調(diào)遞減,在區(qū)間[$\frac{3a+2}{2}$,0]上單調(diào)遞增,f(x)min=f($\frac{3a+2}{2}$)=$\frac{-9{a}^{2}-12a}{4}$,
③當(dāng)$\frac{3a+2}{2}$≤-1,即a≤$-\frac{4}{3}$時(shí),函數(shù)在區(qū)間[-1,0]上單調(diào)遞增,f(x)min=f(-1)=3a+4.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 定義域是[-1,1] | B. | 是偶函數(shù) | ||
| C. | 值域是[-sin1,sin1] | D. | 不是周期函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com