分析 (1)由數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12,利用等差數(shù)列的通項公式先求出d=2,由此能求出數(shù)列{an}的通項公式.
(2)利用裂項法求和,根據(jù)Tn>$\frac{1000}{2009}$,建立不等式,即可求出滿足Tn>$\frac{1000}{2009}$的最小正整數(shù)n.
解答 解:(1)∵數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12,
∴2+2+d+2+2d=12,
解得d=2,
∴an=2+(n-1)×2=2n.
(2)∵bn=$\frac{4}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{4}{4(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
∵Tn>$\frac{1000}{2009}$,
∴$\frac{n}{2n+1}$>$\frac{1000}{2009}$,
∴n>111$\frac{1}{9}$,
∴滿足Tn>$\frac{1000}{2009}$的最小正整數(shù)n是112.
點評 本題考查了等差數(shù)列的通項公式以及前n項和公式,正確運用裂項法是關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com