欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.在正六棱柱ABCDEF-A1B1C1D1E1F1中,用$\overrightarrow{AB}$,$\overrightarrow{AF}$,$\overrightarrow{A{A}_{1}}$表示向量$\overrightarrow{A{D}_{1}}$,其結(jié)果為$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$).

分析 根據(jù)六棱柱的幾何特征,結(jié)合向量加法的三角形法則,可得答案.

解答 解:如下圖所示:

在正六棱柱ABCDEF-A1B1C1D1E1F1中,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{AD}$=2($\overrightarrow{AB}$+$\overrightarrow{AF}$),
故$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$),
故答案為:$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$)

點(diǎn)評 本題考查的知識瞇是正六棱柱的幾何特征,向量加法的三角形法則,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了了解市民的環(huán)保意識,某校高一(1)班50名學(xué)生在6月5日(世界環(huán)境日)這一天調(diào)查了各自家庭丟棄舊塑料袋的情況,有關(guān)數(shù)據(jù)如下表:
每戶丟棄舊塑料袋個數(shù)2345
戶數(shù)10102010
(1)求這50戶居民每天丟棄舊塑料袋的平均數(shù);
(2)求這50戶居民每天丟棄舊塑料袋的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.A國現(xiàn)有人口3500萬,年糧食產(chǎn)量800萬噸,根據(jù)歷年的資料統(tǒng)計(jì),A國人口的平均年增長率為2%,每人平均每年消耗糧食200千克,假定他們國家既不出口糧食,也不進(jìn)口糧食.預(yù)測多少年后,A國會出現(xiàn)糧食短缺的惰況?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,cosA=$\frac{12}{13}$,bc=182.
(1)求△ABC的面積;
(2)若c-b=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐P-ABC中,D,E,F(xiàn)分別是PA,PB,PC的中點(diǎn).M是AB上一點(diǎn),連接MC,N是PM與DE的交點(diǎn),連接NF,求證:NF∥CM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖給定的是紙盒的外表面,下列哪一項(xiàng)能由它折疊而成( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.指出由正弦曲線y=sinx經(jīng)過怎樣的步驟可以得到正弦型曲線y=2sin($\frac{1}{3}x+\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P(x,y)是拋物線y2=x上任意一點(diǎn),且點(diǎn)P在直線ax+y+a=0的上面,則實(shí)數(shù)a的取值范圍為a<$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圓O:x2+y2=b2,過橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B,若橢圓上存在點(diǎn)P,使$\overrightarrow{PA}•\overrightarrow{PB}=0$,則橢圓離心率e的取值范圍為( 。
A.$[\frac{1}{2},1)$B.$[\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

同步練習(xí)冊答案