| A. | {x|2kπ≤x≤$\frac{π}{2}$+2kπ,k∈Z} | B. | {x|kπ≤x≤$\frac{π}{2}$+kπ,k∈Z} | ||
| C. | {x|-$\frac{π}{2}$+2kπ≤x≤$\frac{π}{2}$+2kπ,k∈Z} | D. | {x|$\frac{π}{2}$+2kπ≤x≤$\frac{3}{2}$π+2kπ,k∈Z} |
分析 首先,根據(jù)誘導(dǎo)公式,化簡所給函數(shù)解析式,然后,分別寫出為減函數(shù)時的取值情況,然后,取其交集即可得到答案.
解答 解:y=cos($\frac{π}{2}$+x)=-sinx,
為減函數(shù)時,滿足{x|-$\frac{π}{2}$+2kπ≤x≤$\frac{π}{2}$+2kπ,k∈Z};
y=cos(2π-x)=cosx,
為減函數(shù)時,滿足{x|2kπ≤x≤π+2kπ,k∈Z};
∴x的集合為:{x|2kπ≤x≤$\frac{π}{2}$+2kπ,k∈Z},
故選:A.
點(diǎn)評 本題重點(diǎn)考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性與單調(diào)區(qū)間的求法,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | .x∈R | B. | x∈R且x≠$\frac{1}{2}$ | C. | x>$\frac{1}{2}$ | D. | x$<\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com