欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.不用計(jì)算器求下列各式的值.
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2;
(2)計(jì)算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$.

分析 (1)(2)利用指數(shù)冪的運(yùn)算性質(zhì)即可得出.

解答 解:(1)原式=${(\frac{9}{4})^{\frac{1}{2}}}-1-{(\frac{37}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}$=${(\frac{3}{2})^{2×\frac{1}{2}}}-1-{(\frac{3}{2})^{-3×\frac{2}{3}}}+{(\frac{3}{2})^{-2}}$=$\frac{3}{2}-1-{(\frac{3}{2})^{-2}}+{(\frac{3}{2})^{-2}}$=$\frac{1}{2}$.
(2)原式=$0.{4}^{3×(-\frac{1}{3})}$-1+${2}^{4×\frac{3}{4}}$+$(0.5)^{2×\frac{1}{2}}$=$\frac{5}{2}$-1+8+$\frac{1}{2}$=10.

點(diǎn)評 本題考查了指數(shù)冪的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,已知點(diǎn)P(1,-2),直線l:$\left\{\begin{array}{l}{x=1+m}\\{y=-2+m}\end{array}\right.$(m 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以 x軸的正半軸為極軸建立極坐標(biāo)系;曲線C的極坐標(biāo)方程為ρsin2θ=3cosθ;直線l與曲線C的交點(diǎn)為A,B.
(1)求直線l和曲線C的普通方程;
(2)求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式lg|x+1|<0的解集為( 。
A.(-∞,-1]B.(-2,0)C.[-2,-1)∪(-1,0)D.(-2,-1)∪(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知將函數(shù)$g(x)=sin(x+\frac{π}{3}+φ)(φ∈R)$圖象上的每一點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$后所得的圖象向右平移$\frac{π}{6}$與f(x)圖象重合,若$f(x)≤|f(\frac{π}{6})|$對x∈R恒成立,且$f(\frac{π}{2})>f(π)$,則f(x)的單調(diào)遞增區(qū)間是( 。
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$B.$[kπ,kπ+\frac{π}{2}](k∈Z)$C.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$D.$[kπ-\frac{π}{2},kπ](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若數(shù)列{an}滿足$\frac{{a_{n+1}^2}}{a_n^2}=p$(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”,甲:數(shù)列{an}是等方比數(shù)列;乙:數(shù)列{ an }是等比數(shù)列,則(  )
A.甲是乙的充分條件但不是必要條件
B.甲是乙的必要條件但不是充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件也不是乙的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在探究系數(shù)一元二次方程的根與系數(shù)的關(guān)系時(shí),可按下述方法進(jìn)行:設(shè)實(shí)系數(shù)一元二次方程a2x2+a1x+a0=0…①
在復(fù)數(shù)集C內(nèi)的根為x1,x2,則方程①可變形為a2(x-x1)(x-x2)=0,展開得a1x2-a2(x1+x2)x+a2x1x2=0,…②比較①②可以得到:$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{{a}_{1}}{{a}_{2}}}\\{{x}_{1}{x}_{2}=\frac{{a}_{0}}{{a}_{2}}}\end{array}\right.$類比上述方法,設(shè)實(shí)系數(shù)一元n次方程anxn+an-1xn-1+…+a1x+a0=0(n≥2且n∈N*)在復(fù)數(shù)集C內(nèi)的根為x1,x2,…,xn,則這n個(gè)根的積$\underset{\stackrel{n}{Π}}{i=1}$xi=${(-1)}^{n}\frac{{a}_{0}}{{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=2sin{(ωx+φ)_{\;}}(ω>0,|φ|≤\frac{π}{2})$的圖象如圖.
(1)根據(jù)函數(shù)的圖象求該函數(shù)的解析式.
(2)求函數(shù)f(x)在$x∈[0,\frac{π}{2}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.2017年高考特別強(qiáng)調(diào)了要增加對數(shù)學(xué)文化的考查,為此瓦房店市高級中學(xué)高三年級數(shù)學(xué)組特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對整個(gè)高三年級的學(xué)生進(jìn)行了測試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績,按照成績?yōu)閇50,60),[60,70),…,[90,100]分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).
(1)求頻率分布直方圖中的x的值,并估計(jì)所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表,中位數(shù)請用分?jǐn)?shù)表示);
(2)若高三年級共有700名學(xué)生,試估計(jì)高三學(xué)生中這次測試成績不低于70分的人數(shù);
(3)若利用分層抽樣的方法從樣本中成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人參加這次考試的考后分析會,試求后兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$sinα=-\frac{{\sqrt{3}}}{2}$,求cosα、tanα的值.

查看答案和解析>>

同步練習(xí)冊答案