分析 (1)利用向量的數(shù)量積公式即可求y=f(x);
(2)若x∈[0,$\frac{π}{2}$]時,根據(jù)f(x)的最小值為-2,建立方程關系即可求a的值;
(3)利用五點作圖法,即可作出(2)結論中函數(shù)在一個周期內的圖象.
解答
解:(1)y=$\overrightarrow{m}•\overrightarrow{n}$=($\sqrt{3}$cosx-sinx)×2cosx+a-$\sqrt{3}$=2$\sqrt{3}$cos2x-2sinxcosx+a-$\sqrt{3}$
=$\sqrt{3}$cos2x+$\sqrt{3}$-sin2x+a-$\sqrt{3}$=2cos(2x+$\frac{π}{6}$)+a,
即y=f(x)=2cos(2x+$\frac{π}{6}$)+a;
(2)若x∈[0,$\frac{π}{2}$]時,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴當2x+$\frac{π}{6}$=π時,函數(shù)取得最小值此時y=-2+a=-2,
解得a=0;
(3)由(2)知f(x)=2cos(2x+$\frac{π}{6}$),
| x | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ |
| 2x+$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| f(x) | 0 | 2 | 0 | -2 | 0 |
點評 本題主要考查三角函數(shù)的圖象和性質,利用向量數(shù)量積公式進行化簡是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,-1) | B. | (-∞,-1] | C. | (-∞,-2) | D. | (-∞,-2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{19}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com