分析 利用組合數(shù)公式進(jìn)行,即可得出結(jié)論.
解答 解:∵C${\;}_{n+1}^{m}$=$\frac{(n+1)!}{m!(n+1-m)!}$,
C${\;}_{n}^{m}$+${C}_{n}^{m-1}$=$\frac{n!}{m!(n-m)!}+\frac{n!}{(m-1)!(n+1-m)!}$=$\frac{(n+1)!}{m!(n+1-m)!}$,
∴C${\;}_{n+1}^{m}$=C${\;}_{n}^{m}$+${C}_{n}^{m-1}$.
故答案為:C${\;}_{n}^{m}$+${C}_{n}^{m-1}$.
點(diǎn)評 本題考查了組合數(shù)的性質(zhì)及其證明,考查組合數(shù)公式的應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 一定不在一、二象限 | B. | 一定不在二、三象限 | ||
| C. | 一定不在三、四象限 | D. | 一定不在二、三、四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x>0} | B. | {x|x<0} | C. | {x|x<-1或x>1} | D. | {x|-1<x<1 } |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com