欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.兩個等差數(shù)列{an},{bn}的前n項(xiàng)和分別是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{5n+3}{4n+5}$,則$\frac{{a}_{10}}{_{10}}$=$\frac{98}{81}$.

分析 由題意和等差數(shù)列的求和公式以及性質(zhì)可得$\frac{{a}_{10}}{_{10}}$=$\frac{{S}_{19}}{{T}_{19}}$,代值計(jì)算可得.

解答 解:∵兩個等差數(shù)列{an},{bn}的前n項(xiàng)和分別是Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{5n+3}{4n+5}$,
∴$\frac{{a}_{10}}{_{10}}$=$\frac{2{a}_{10}}{2_{10}}$=$\frac{{a}_{1}+{a}_{19}}{_{1}+_{19}}$=$\frac{\frac{19({a}_{1}+{a}_{19})}{2}}{\frac{19(_{1}+_{19})}{2}}$=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{5×19+3}{4×19+5}$=$\frac{98}{81}$
故答案為:$\frac{98}{81}$

點(diǎn)評 本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)平面內(nèi)表示復(fù)數(shù)z=cos2+isin3的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四邊形ABCD中,AB=3,BC=2$\sqrt{2}$,AC=$\sqrt{5}$,∠ADC=3∠ABC.
(Ⅰ)求∠ADC的大小;
(Ⅱ)若BD•cos∠ABD=AB,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.?dāng)?shù)列{an}的通項(xiàng)公式為an=30+7n-n2,n∈N*
(I)若an>0,求n的取值;
(Ⅱ)數(shù)列{an}中,是否存在最大項(xiàng)?若存在,求出最大項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(1)函數(shù)f(x)=sinx•cos$\frac{x}{2}$,g(x)=cosx•sin$\frac{x}{2}$,那么[$\frac{π}{2}$,$\frac{3}{4}π$]是函數(shù)f(x)-g(x)的一個單調(diào)減區(qū)間;
(2)對于f(x)=sinx,若α為第一象限角,則f(α)+f($\frac{π}{2}$-α)>1;
(3)曲線y=cos(2x-$\frac{π}{6}$)的一條對稱軸方程是x=-$\frac{2}{3}$π;
(4)函數(shù)y=sin4x+cos2x的最小正周期是π;
(5)函數(shù)y=tan($\frac{x}{2}$-$\frac{π}{3}$)圖象的一個對稱中心是($\frac{5}{3}$π,0).
其中正確命題的序號是(2)(4)(5).(將你認(rèn)為正確的都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若sin(π-α)=log8$\frac{1}{4}$,且α∈(-$\frac{π}{2}$,0),則cos(π+α)=-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,m)$,若$\overrightarrow a⊥\overrightarrow b$,則$|\overrightarrow b|$=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1右支上一點(diǎn),F(xiàn)1、F2是左、右焦點(diǎn),若tan∠PF1F2=$\frac{1}{2}$,sin∠PF2F1=$\frac{2\sqrt{5}}{5}$,則此雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.以下命題正確的是:①④.
①把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個單位,可得到y(tǒng)=3sin2x的圖象;
②四邊形ABCD為長方形,AB=2,BC=1,O為AB中點(diǎn),在長方形ABCD內(nèi)隨機(jī)取一點(diǎn)P,取得的P點(diǎn)到O的距離大于1的概率為1-$\frac{π}{2}$;
③為了了解800名學(xué)生對學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;
④已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=1.23x+0.08.

查看答案和解析>>

同步練習(xí)冊答案