欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知函數(shù)f(x)=$\frac{1}{2}a{x^2}$-lnx,a∈R.
(I)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(II)討論f(x)的單調(diào)性.

分析 (I)求出a=2的函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程,即可得到所求切線方程;
(II)求得函數(shù)的導(dǎo)數(shù),討論(i)若a≤0,(ii)若a>0,令導(dǎo)數(shù)大于0,可得增區(qū)間,令導(dǎo)數(shù)小于0,可得減區(qū)間.

解答 解:(I)當(dāng)a=2時(shí),f(x)=x2-lnx,
$f'(x)=2x-\frac{1}{x}=\frac{{2{x^2}-1}}{x}$.
則f′(1)=1,f(1)=1,
曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為l:y-f(1)=f'(1)(x-1),
所以切線方程為l:x-y=0;
(II)函數(shù)f(x)的定義域?yàn)椋?,+∞).
$f'(x)=ax-\frac{1}{x}=\frac{{a{x^2}-1}}{x}$.
(i)若a≤0,f′(x)<0恒成立,則f(x)在(0,+∞)上單調(diào)遞減.
(ii)若a>0,令f′(x)=0,則$x=\sqrt{\frac{1}{a}}$.
當(dāng)x變化時(shí),f′(x)與f(x)的變化情況如下表:

x$(0,\sqrt{\frac{1}{a}})$$\sqrt{\frac{1}{a}}$$(\sqrt{\frac{1}{a}},+∞)$
f′(x)-0+
f(x)極小值
所以f(x)在$(0,\frac{{\sqrt{a}}}{a})$上單調(diào)遞減,在$(\frac{{\sqrt{a}}}{a},+∞)$上單調(diào)遞增.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程和單調(diào)區(qū)間,掌握分類(lèi)討論的思想方法是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$下,函數(shù)z=3x-y的最小值是(  )
A.9B.5C.-5D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow$=(cosx,cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$-1
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{2}$]時(shí),若f(x)=1,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.對(duì)于函數(shù)y=f(x),當(dāng)x∈(0,+∞)時(shí),總有f(x)<xf′(x),若m>n>0,則下列不等式中,恒成立的是( 。
A.$\frac{f(m)}{n}$<$\frac{f(n)}{m}$B.$\frac{f(m)}{m}$<$\frac{f(n)}{n}$C.$\frac{f(m)}{n}$>$\frac{3f(n)}{m}$D.$\frac{f(m)}{m}$>$\frac{f(n)}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)a,b∈R,則“a>b>1”是“a-b<a2-b2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.甲有三本不同的書(shū),乙去借閱,且至少借1本,則不同借法的總數(shù)為( 。
A.3B.6C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=cos(ωx+θ)為奇函數(shù)(0<θ<π),其圖象與直線y=1的某兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1、x2,且|x2-x1|的最小值為π,則( 。
A.$ω=2,θ=\frac{π}{2}$B.$ω=\frac{1}{2},θ=\frac{π}{2}$C.$ω=\frac{1}{2},θ=\frac{π}{4}$D.$ω=2,θ=\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)定義在R上的奇函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,則不等式f(x-1)<0的解集是(  )
A.(-∞,1)B.(1,+∞)C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.204與85的最大公約數(shù)是17.

查看答案和解析>>

同步練習(xí)冊(cè)答案