欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知集合A={(x,y)|x+2y-4=0},集合B={(x,y)|x=0},則A∩B=( 。
A.{0,2}B.{(0,2)}C.(0,2)D.

分析 根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵A={(x,y)|x+2y-4=0},集合B={(x,y)|x=0},
∴A∩B═{(x,y)|$\left\{\begin{array}{l}{x=0}\\{x+2y-4=0}\end{array}\right.$}={(x,y)|$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$}={(0,2)},
故選:B

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=ex-mx的圖象不存在與直線$y=\frac{1}{2}x$垂直的切線,則實(shí)數(shù)m的取值范圍是( 。
A.m≤-$\frac{1}{2}$B.m>-$\frac{1}{2}$C.m≤2D.m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$\overrightarrow p=(x,|x-a|),a∈R,\overrightarrow q=(x,x-1)$,函數(shù) f(x)=$\overrightarrow p•\overrightarrow q$(x∈R).
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若a<1且不等式f(x)≥2x-3對(duì)一切實(shí)數(shù)x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.七個(gè)實(shí)數(shù)排成一排,奇數(shù)項(xiàng)成A•P,偶數(shù)項(xiàng)成G•P,且奇數(shù)項(xiàng)之和與偶數(shù)項(xiàng)之積的差為42.首末兩項(xiàng)與中間項(xiàng)之和為27,求中間的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x∈R,|cosx|≤1,則?p是( 。
A.?x∈R,|cosx|>1B.?x∈R,|cosx|>1C.?x∈R,|cosx|≤1D.?x∈R,|cosx|≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.關(guān)于△ABC有如下命題:在正三角形ABC內(nèi)部(不包括邊界)任取一點(diǎn)P,P點(diǎn)到三邊的距離分別為h1,h2,h3,則h1+h2+h3為定值,證明如下:連接PB、PC、PA,設(shè)△PBC、△PCA、△PAB的面積分別為S1,S2,S3,△ABC的面積為S,則有:S=S1+S2+S3⇒h=h1+h2+h3(其中h為△ABC的高),根據(jù)上述思維猜想在正四面體(四個(gè)面均為正三角形的三棱錐)中的結(jié)論,并對(duì)猜想進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f(x)=asin(πx+α)+bcos(πx+β)+4(其中a,b,α,β為非零實(shí)數(shù)),若f(2013)=5,則f(2014)的值為( 。
A.5B.3C.8D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3
(1)求f(x)在(e,f(e))處的切線方程
(2)若存在x∈[1,e]時(shí),使2f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,$\frac{1}{3}$),則P(x=2)等于( 。
A.$\frac{80}{243}$B.$\frac{4}{243}$C.$\frac{13}{243}$D.$\frac{13}{16}$

查看答案和解析>>

同步練習(xí)冊(cè)答案