分析 根據(jù)log2x•logx2=1,利用基本不等式,可得0<x<1時,f(x)=2+log2x+5logx2的最大值.
解答 解:∵0<x<1,
∴l(xiāng)og2x<0,logx2<0,
∴-log2x>0,-5logx2>0,
∴-log2x-5logx2≥2$\sqrt{(-{log}_{2}x)(-5{log}_{x}2)}$=2$\sqrt{5}$,
故log2x+5logx2≤-2$\sqrt{5}$,
故f(x)=2+log2x+5logx2≤2-2$\sqrt{5}$,
即f(x)=2+log2x+5logx2的最大值為2-2$\sqrt{5}$.
點評 本題考查的知識點是對數(shù)的運(yùn)算性質(zhì),基本不等式,函數(shù)的最大值,是函數(shù)與不等式的綜合應(yīng)用,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{π}{4}$,$\frac{π}{2}$) | B. | ($\frac{3π}{4}$,π) | C. | ($\frac{5π}{4}$,$\frac{3π}{2}$) | D. | ($\frac{7π}{4}$,2π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (2$\sqrt{2}$-2,2$\sqrt{6}$-4) | B. | ($\sqrt{3}$+2,$\sqrt{3}$+$\sqrt{6}$) | C. | (2$\sqrt{2}$+2,2$\sqrt{6}$+4) | D. | (2$\sqrt{6}$-4,4$\sqrt{3}$-6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com