【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( )
![]()
A. 這15天日平均溫度的極差為![]()
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于![]()
D. 由折線圖能預(yù)測本月溫度小于
的天數(shù)少于溫度大于
的天數(shù)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,正確命題的個(gè)數(shù)有( )
①
,![]()
②命題“
,
”的否定是“
,
”
③“若
,則
,
中至少有一個(gè)不小于2”的逆命題是真命題
④復(fù)數(shù)
,則
的充分不必要條件是![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
是平面
內(nèi)的一組基向量,
為
內(nèi)的定點(diǎn),對于
內(nèi)任意一點(diǎn)
,當(dāng)
時(shí),則稱有序?qū)崝?shù)對
為點(diǎn)
的廣義坐標(biāo),若點(diǎn)
、
的廣義坐標(biāo)分別為
、
,對于下列命題:
① 線段
、
的中點(diǎn)的廣義坐標(biāo)為
;
② A、
兩點(diǎn)間的距離為
;
③ 向量
平行于向量
的充要條件是
;
④ 向量
垂直于向量
的充要條件是
.
其中的真命題是________(請寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內(nèi)的我國各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對生命、健康和疾病的認(rèn)識(shí),具有悠久歷史傳統(tǒng)和獨(dú)特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華民族的瑰寶.某科研機(jī)構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量
(單位:克)與藥物功效
(單位:藥物單位)之間具有關(guān)系
.檢測這種藥品一個(gè)批次的5個(gè)樣本,得到成分甲的平均值為4克,標(biāo)準(zhǔn)差為
克,則估計(jì)這批中醫(yī)藥的藥物功效的平均值為( )
A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( )
![]()
A. 這15天日平均溫度的極差為![]()
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于![]()
D. 由折線圖能預(yù)測本月溫度小于
的天數(shù)少于溫度大于
的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐
的底面是邊長為2的正方形,平面
平面
,
,
.
![]()
(1)求證:平面
平面
;
(2)設(shè)
為
的中點(diǎn),問邊
上是否存在一點(diǎn)
,使
平面
,并求此時(shí)點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花卉企業(yè)引進(jìn)了數(shù)百種不同品種的康乃馨,通過試驗(yàn)田培育,得到了這些康乃馨種子在當(dāng)?shù)丨h(huán)境下的發(fā)芽率,并按發(fā)芽率分為
組:
、
、
、
加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.企業(yè)對康乃馨的種子進(jìn)行分級(jí),將發(fā)芽率不低于
的種子定為“
級(jí)”,發(fā)芽率低于
但不低于
的種子定為“
級(jí)”,發(fā)芽率低于
的種子定為“
級(jí)”.
![]()
(Ⅰ)現(xiàn)從這些康乃馨種子中隨機(jī)抽取一種,估計(jì)該種子不是“
級(jí)”種子的概率;
(Ⅱ)該花卉企業(yè)銷售花種,且每份“
級(jí)”、“
級(jí)”、“
級(jí)”康乃馨種子的售價(jià)分別為
元、
元、
元.某人在市場上隨機(jī)購買了該企業(yè)銷售的康乃馨種子兩份,共花費(fèi)
元,以頻率為概率,求
的分布列和數(shù)學(xué)期望;
(Ⅲ)企業(yè)改進(jìn)了花卉培育技術(shù),使得每種康乃馨種子的發(fā)芽率提高到原來的
倍,那么對于這些康乃馨的種子,與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進(jìn)后發(fā)芽率數(shù)據(jù)的方差是否發(fā)生變化?若發(fā)生變化,是變大了還是變小了?(結(jié)論不需要證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若拋物線
的焦點(diǎn)為
,
是坐標(biāo)原點(diǎn),
為拋物線上的一點(diǎn),向量
與
軸正方向的夾角為60°,且
的面積為
.
(1)求拋物線
的方程;
(2)若拋物線
的準(zhǔn)線與
軸交于點(diǎn)
,點(diǎn)
在拋物線
上,求當(dāng)
取得最大值時(shí),直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com