分析 ①利用等差數(shù)列前n項(xiàng)和公式求解.
②利用等比數(shù)列前n項(xiàng)和公式求解.
解答 解:①在等差數(shù)列中,
前n項(xiàng)和Sn=$\frac{n}{2}({a}_{1}+{a}_{n})$=na1+$\frac{n(n+1)}{2}d$.
②在等比數(shù)列中,
當(dāng)公比q=1時(shí),前n項(xiàng)和Sn=na1,
當(dāng)公比q≠1時(shí),前n項(xiàng)和Sn=$\frac{{a}_{1}(1-{q}^{2})}{1-q}$.
∴Sn=$\left\{\begin{array}{l}{n{a}_{1},q=1}\\{\frac{{a}_{1}(1-{q}^{2})}{1-q},q≠1}\end{array}\right.$.
故答案為:$\frac{n}{2}({a}_{1}+{a}_{n})$,na1+$\frac{n(n+1)}{2}d$;$\left\{\begin{array}{l}{n{a}_{1},q=1}\\{\frac{{a}_{1}(1-{q}^{2})}{1-q},q≠1}\end{array}\right.$.
點(diǎn)評(píng) 本題考查等差數(shù)列、等比數(shù)列求和公式,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,要熟記基本公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若a2+b2=0則a≠0且b≠0(a,b∈R) | B. | 若a=b≠0(a,b∈R),則a2+b2≠0 | ||
| C. | 若a≠0且b≠0(a,b∈R),則a2+b2≠0 | D. | 若a≠0或b≠0(a,b∈R),則a2+b2≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -3 | B. | 3 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{4}{9}$ | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{2-\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com