欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)為-5和3,則這個(gè)二次函數(shù)的單調(diào)減區(qū)間為( 。
A.(-∞,-1]B.[2,+∞)C.(-∞,2]D.[-1,+∞)

分析 由題意得到函數(shù)的對(duì)稱軸,結(jié)合二次項(xiàng)系數(shù)大于0,從而求出函數(shù)的遞減區(qū)間.

解答 解:若二次函數(shù)的圖象與x軸交點(diǎn)的橫坐標(biāo)為-5和3,
∴對(duì)稱軸x=$\frac{-5+3}{2}$=-1,
∵a>0,
∴函數(shù)f(x)在(-∞,-1]遞減,在(-1,+∞)遞增,
故選:A.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),求出函數(shù)的對(duì)稱軸是解答本題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.A、B、C、D分別是復(fù)數(shù)z1,z2,z3=z1+z2,z4=z1-z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn),O是原點(diǎn),若|z1|=|z2|,則△COD一定是( 。
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{a}$=1的右焦點(diǎn)的坐標(biāo)為($\sqrt{13}$,0),則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若對(duì)于任意實(shí)數(shù)x,有|x+a|-|x+1|<2a恒成立,則實(shí)數(shù)a的取值范圍是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx+$\frac{3}{8}$x2-2x+2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間[e2,+∞)(k∈Z)上有零點(diǎn),求k的最大值(e=2.718…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.觀察下列等式
若銳角θ滿足sinθ+cosθ=$\sqrt{2}$,則sinθcosθ=$\frac{1}{2}$
若銳角θ滿足sin3θ+cos3θ=$\frac{{\sqrt{2}}}{2}$,則sinθcosθ=$\frac{1}{2}$
若銳角θ滿足sin5θ+cos5θ=$\frac{{\sqrt{2}}}{4}$,則sinθcosθ=$\frac{1}{2}$
請(qǐng)你仔細(xì)觀察上述幾個(gè)等式的規(guī)律,寫出一個(gè)一般性的命題:若銳角θ滿足${sin^{2n+1}}θ+{cos^{2n+1}}θ=2{(\frac{{\sqrt{2}}}{2})^{2n+1}}(n∈N)$,則$sinθcosθ=\frac{1}{2}$或
若銳角θ滿足${sin^{2n+1}}θ+{cos^{2n+1}}θ=\frac{{\sqrt{2}}}{2^n}(n∈N)$,則$sinθcosθ=\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知F1(-1,0),F(xiàn)2(1,0)是橢圓C的兩個(gè)焦點(diǎn),過(guò)F2且垂直x軸的直線交C于A,B兩點(diǎn),且|AB|=3,則C的方程為$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\sqrt{3}+\frac{sinx}{1+cosx}$的所有正的零點(diǎn)從小到大依次為x1,x2,x3,…,設(shè)α=x1+x2+x3+…+x2015,則sinα的值是( 。
A.0B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充分性不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案