分析 (1)利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式即可解得f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$;
(2)由sin(2x+$\frac{π}{6}$)∈[-1,1],根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得函數(shù)值域;
(3)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{π}{2}$,k∈Z,可解得函數(shù)的單調(diào)遞增區(qū)間.
解答 解:(1)f(x)=2sin(x+$\frac{π}{3}$)cosx=$\sqrt{3}$sinxcosx+cos2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,
(2)∵sin(2x+$\frac{π}{6}$)∈[-1,1],
∴函數(shù)y=f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$的值域是:[-$\frac{1}{2}$,$\frac{3}{2}$].
(3)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{π}{2}$,k∈Z,可解得:k$π-\frac{π}{3}$≤x≤k$π+\frac{π}{6}$,k∈Z,
故函數(shù)的單調(diào)遞增區(qū)間為:[k$π-\frac{π}{3}$,k$π+\frac{π}{6}$],k∈Z.
點評 本題主要考查了三角函數(shù)中的恒等變換的應用,考查了正弦函數(shù)的圖象和性質(zhì),屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 等邊三角形 | B. | 腰長為a的等腰三角形 | ||
| C. | 底邊長為a的等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | R | B. | (0,+∞) | C. | (0,1] | D. | [1,+∞) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com