分析 求出函數(shù)的導數(shù),由題意得函數(shù)的導數(shù)在R上至多有一個零點,結合判別式即可求出實數(shù)a的取值范圍.
解答 解:∵f(x)=x3+ax2+(a+6)x+1,
∴f′(x)=3x2+2ax+a+6,
∵若函數(shù)f(x)=x3+ax2+(a+6)x+1在R上單調(diào)遞增,
∴f′(x)=3x2+2ax+a+6≥0在R上恒成立,
即△=4a2-12a-72≤0,
解得:-3≤a≤6,
故答案為:[-3,6].
點評 本題考查了利用導數(shù)研究三次多項式函數(shù)的單調(diào)性,從而求參數(shù)a的取值范圍,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com