欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.直線l1與l2是圓x2+y2=1的兩條切線,若l1與l2的交點為(1,2),則l1與l2的夾角的正切值等于$\frac{4}{3}$.

分析 作出對應的圖象,設∠OBA=θ,求出tanθ,利用正切的倍角公式進行求解即可.

解答 解:作出對應的圖象如圖:
則B(1,2),A(1,0),
設∠OBA=θ,
則tanθ=$\frac{OA}{AB}=\frac{1}{2}$,
則l1與l2的夾角為∠ABC=2θ,
則tan∠ABC=tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\frac{2×\frac{1}{2}}{1-(\frac{1}{2})^{2}}=\frac{1}{1-\frac{1}{4}}$=$\frac{4}{3}$,
故答案為:$\frac{4}{3}$

點評 本題主要考查三角函數(shù)值的求解,根據(jù)直線和圓相切的位置關系,求出tanθ,利用正切的倍角公式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.從2位男同學和8位女同學中選兩人參加志愿者活動,假設每位同學選到的可能性都相同,則選到兩位性別相同的同學的概率是$\frac{29}{45}$.(結果用最簡分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知各項均為正數(shù)的等比數(shù)列{an}中,3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{11}+{a}_{13}}{{a}_{8}+{a}_{10}}$=( 。
A.27B.3C.-1或3D.1或27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x
(1)討論f(x)的單調區(qū)間;
(2)若函數(shù)g(x)=f(x)-m在[-$\frac{3}{2}$,3]上有三個零點,求實數(shù)m的取值范圍;
(3)設函數(shù)h(x)=ex-ex+4n2-2n(e為自然對數(shù)的底數(shù)),如果對任意的x1,x2∈[$\frac{1}{2}$,2],都有f(x1)≤h(x2)恒成立,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+a(x+lnx),a∈R.
(Ⅰ)若當a=-1時,求f(x)的單調區(qū)間;
(Ⅱ)若f(x)>$\frac{1}{2}$(e+1)a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在等比數(shù)列中,a3=3,S3=9,則a2=3或-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知$\overrightarrow{OA}$=(0,2),$\overrightarrow{OB}$=(2,0),$\overrightarrow{BC}$=($\sqrt{2}$cosα,$\sqrt{2}$sinα)(α∈R),則$\overrightarrow{OA}$與$\overrightarrow{OC}$成角的取值范圍為[$\frac{π}{4}$,$\frac{3π}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.用均勻隨機數(shù)進行隨機模擬,可以解決(  )
A.只能求幾何概型的概率,不能解決其他問題
B.不僅能求幾何概型的概率,還能計算圖形的面積
C.不但能估計幾何概型的概率,還能估計圖形的面積
D.最適合估計古典概型的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若變量x,y滿足約束條件$\left\{{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+2y≤5}\end{array}}\right.$,則z=2x+y的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案