分析 (1)取EC中點(diǎn)N,連結(jié)MN,BN.由三角形中位線的性質(zhì)證得MN∥AB,且MN=AB.由此可得四邊形ABNM為平行四邊形.得到BN∥AM.再由線面平行的判定得答案;
(2)由VE-BCD=VD-BCE,利用等積法求得點(diǎn)D到平面BEC的距離.
解答 解:(1)證明:取EC中點(diǎn)N,連結(jié)MN,BN. 在△EDC中,M,N分別為EC,ED的中點(diǎn),
∴MN∥CD,且MN=$\frac{1}{2}$CD. 由已知AB∥CD,$AB=\frac{1}{2}CD$,
∴MN∥AB,且MN=AB.
∴四邊形ABNM為平行四邊形.
BN∥AM.
又∵BN?平面BEC,且AM?平面BEC,
∴AM∥平面BEC.
(2)由已知可得BC⊥平面BDE,
∵BE?平面BDE,∴BC⊥BE,
∴${S}_{△BCD}=\frac{1}{2}BD•BC=\frac{1}{2}\sqrt{2}•\sqrt{2}=1$.
${S}_{△BCE}=\frac{1}{2}BE•BC=\frac{1}{2}\sqrt{2}•\sqrt{3}=\frac{\sqrt{6}}{2}$.
又VE-BCD=VD-BCE,設(shè)點(diǎn)D到平面BEC的距離為h.
則$\frac{1}{3}{S}_{△BCD}•DE=\frac{1}{3}•{S}_{△BCE}•h$,
∴$h=\frac{{S}_{△BCD}•DE}{{S}_{△BCE}}=\frac{1}{\frac{\sqrt{6}}{2}}=\frac{\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題主要考查直線與平面之間的平行、垂直等位置關(guān)系,二面角的概念、求法等知識(shí),以及空間想象能力和邏輯推理能力,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 7 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com