【題目】已知函數(shù)
.
(1)求函數(shù)
的定義域D,并判斷
的奇偶性;
(2)如果當
時,
的值域是
,求a的值;
(3)對任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,請說明理由.
【答案】(1)定義域為
,奇函數(shù);(2)
;(3)存在,
,詳見解析
【解析】
(1)根據(jù)真數(shù)大于零可得到不等式求得定義域;由對數(shù)運算法則可證得
,從而可知函數(shù)為奇函數(shù);
(2)根據(jù)復合函數(shù)單調(diào)性可證得
為定義域內(nèi)的增函數(shù),從而得到
,構(gòu)造出關于
的方程,解方程求得
的值;
(3)假設存在后,可根據(jù)對數(shù)運算法則得到
;采用作差法驗證出
,從而可證得成立,并得到此時
.
(1)由函數(shù)有意義可得:
,解得:
的定義域為![]()
是
上的奇函數(shù)
(2)![]()
為
上的減函數(shù),
為
上的減函數(shù)
在
上單調(diào)遞增
,即![]()
,解得:
(舍)或![]()
![]()
(3)
,![]()
假設存在
,使得
,則:![]()
![]()
解得:![]()
![]()
,
![]()
又
![]()
![]()
對任意的
,存在
滿足
,此時![]()
科目:高中數(shù)學 來源: 題型:
【題目】圖(1)為東方體育中心,其設計方案側(cè)面的外輪廓線如圖(2)所示;曲線
是以點
為圓心的圓的一部分,其中
,曲線
是拋物線
的一部分;
且
恰好等于圓
的半徑,
與圓相切且
.
![]()
(1)若要求
米,
米,求
與
的值;
(2)當
時,若要求
不超過45米,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將數(shù)列
的前
項分成兩部分,且兩部分的項數(shù)分別是
,若兩部分和相等,則稱數(shù)列
的前
項的和能夠進行
等和分割.
(1)若
,試寫出數(shù)列
的前
項和所有等和分割;
(2)求證:等差數(shù)列
的前
項的和能夠進行
等和分割;
(3)若數(shù)列
的通項公式為:
,且數(shù)列
的前
項的和能夠進行等和分割,求所有滿足條件的
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列A:
,
,…
(
).如果對小于
(
)的每個正整數(shù)
都有
<
,則稱
是數(shù)列A的一個“G時刻”.記“
是數(shù)列A的所有“G時刻”組成的集合.
(1)對數(shù)列A:-2,2,-1,1,3,寫出
的所有元素;
(2)證明:若數(shù)列A中存在
使得
>
,則
;
(3)證明:若數(shù)列A滿足
-
≤1(n=2,3, …,N),則
的元素個數(shù)不小于
-
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列
和
,記
.
(1)若
,求
;
(2)若
,求
關于m的表達式;
(3)若數(shù)列
和
均是項數(shù)為
項的有窮數(shù)列.,現(xiàn)將
和
中的項一一取出,并按照從小到大的順序排成一列,得到
.求證:對于給定的
,
的所有可能取值的奇偶性相同.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺為宣傳本市,隨機對本市內(nèi)
歲的人群抽取了
人,回答問題“本市內(nèi)著名旅游景點有哪些” ,統(tǒng)計結(jié)果如圖表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
![]()
(1)分別求出
的值;
(2)根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點后兩位)和平均數(shù);
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于實數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是
①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;
③方程
有無數(shù)個根; ④函數(shù)f(x)是增函數(shù).
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),將C上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>3倍,得曲線C1.以O為極點,x軸正半軸為極軸建立極坐標系.
(1)求C1的極坐標方程
(2)設M,N為C1上兩點,若OM⊥ON,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設十人各拿一只水桶,同到水龍頭前打水,設水龍頭注滿第i(i=1,2,…,10)個人的水桶需Ti分鐘,假設Ti各不相同,當水龍頭只有一個可用時,應如何安排他(她)們的接水次序,使他(她)們的總的花費時間(包括等待時間和自己接水所花費的時間)最少( )
A. 從Ti中最大的開始,按由大到小的順序排隊
B. 從Ti中最小的開始,按由小到大的順序排隊
C. 從靠近Ti平均數(shù)的一個開始,依次按取一個小的取一個大的的擺動順序排隊
D. 任意順序排隊接水的總時間都不變
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com