欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<0),圖象最低點(diǎn)的縱坐標(biāo)是-$\sqrt{3}$,相鄰的兩個(gè)對(duì)稱中心是($\frac{π}{3}$,0)和($\frac{5π}{6}$,0)
(1)求f(x)的解析式
(2)f(x)的值域
(3)f(x)的對(duì)稱軸.

分析 (1)由函數(shù)的最值求出A,由周期求出ω,再根據(jù)特殊點(diǎn)的坐標(biāo)求得φ的值,可得函數(shù)的解析式.
(2)由函數(shù)的解析式利用正弦函數(shù)的值域,求得f(x)的最值.
(3)由條件根據(jù)正弦函數(shù)的圖象的對(duì)稱性,求得f(x)的對(duì)稱軸.

解答 解:(1)由題意可得A=$\sqrt{3}$,$\frac{1}{2}$T=$\frac{π}{ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,∴ω=2.
再根據(jù)f($\frac{π}{3}$)=$\sqrt{3}$sin($\frac{2π}{3}$+φ)=0,可得sin($\frac{2π}{3}$+φ)=0.
再結(jié)合,-π<φ<0,可得φ=-$\frac{2π}{3}$,∴f(x)=$\sqrt{3}$sin(2x-$\frac{2π}{3}$).
(2)根據(jù)f(x)=$\sqrt{3}$sin(2x-$\frac{2π}{3}$),可得函數(shù)的最大值為$\sqrt{3}$,最小值為-$\sqrt{3}$.
(3)令2x-$\frac{2π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{7π}{12}$,k∈z,
故f(x)的對(duì)稱軸為x=$\frac{kπ}{2}$+$\frac{7π}{12}$,k∈z.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的值域和它的圖象的對(duì)稱軸,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖記錄了甲、乙兩名同學(xué)其中10次數(shù)學(xué)成績(jī).
(1)求甲同學(xué)成績(jī)的中位數(shù)和乙同學(xué)成績(jī)的眾數(shù);
(2)分別從甲乙兩同學(xué)這10次數(shù)學(xué)成績(jī)位于區(qū)間[110,130)的成績(jī)中各抽取一次,求抽取的分?jǐn)?shù)恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)全集U={0,1,2,3,4,5,6},子集A={0,m,n},B={1,m2-1,n+3},且1∉A∩B.
(1)求m、n的值;
(2)求集合∁U(A∪∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=f(x)在區(qū)間(0,1)上有f′(x)>0,在區(qū)間(1,2)上有f′(x)<0,則有( 。
A.f(x)區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,2)上單調(diào)遞增
B.f(x)區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,2)上單調(diào)遞減
C.f(x)區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,2)上單調(diào)遞增
D.f(x)區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,2)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知△ABC的面積為1,三邊長(zhǎng)分別為a,b,c,則a2+2bc的最小值為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知a>0,函數(shù)f(x)=ax3-3x+1,x∈[-1,1],求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知i是虛數(shù)單位,C是全體復(fù)數(shù)構(gòu)成的集合,若映射f:C→R滿足:對(duì)任意z1,z2∈C,以及任意λ∈R,都有f(λz1+(1-λ)z2)=λf(z1)+(1-λ)f(z2),則稱映射f具有性質(zhì)P.給出如下映射:
①f1:C→R,f1(z)=x-y,z=x+yi(x,y∈R);
②f2:C→R,f2(z)=x2-y,z=x+yi(x,y∈R);
③f3:C→R,f3(z)=2x+y,z=x+yi(x,y∈R);
其中,具有性質(zhì)P的映射的序號(hào)為( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD,四邊形ABCD為正方形,且P為AD的中點(diǎn).
(Ⅰ)求證:CD⊥平面SAD;
(Ⅱ)若Q為SB上一動(dòng)點(diǎn),且PQ∥面SCD,求證:Q為SB的中點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,若△SAD是邊長(zhǎng)為4的等邊三角形,求四面體S-CPQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知O、A、B、C為同一平面內(nèi)的四個(gè)點(diǎn),若2$\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{0}$,則向量$\overrightarrow{OC}$等于( 。
A.$\frac{2}{3}$$\overrightarrow{OA}$-$\frac{1}{3}$$\overrightarrow{OB}$B.-$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$C.2$\overrightarrow{OA}$-$\overrightarrow{OB}$D.-$\overrightarrow{OA}$-2$\overrightarrow{OB}$

查看答案和解析>>

同步練習(xí)冊(cè)答案