欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知在銳角△ABC中,a,b,c分別為角A,B,C的對邊,且sin(2C-$\frac{π}{2}$)=$\frac{1}{2}$.
(1)求角C的大小;
(2)求$\frac{a+b}{c}$的取值范圍.

分析 (1)由sin(2C-$\frac{π}{2}$)=$\frac{1}{2}$,利用誘導(dǎo)公式可得cos2C=-$\frac{1}{2}$,結(jié)合△ABC為銳角三角形,即可求得角C的大。
(2)由正弦定理可得$\frac{a+b}{c}$=$\frac{sinA+sinB}{sinC}$=$2sin(A+\frac{π}{6})$,由C=$\frac{π}{3}$,且三角形是銳角三角形可得$\frac{π}{6}<A<\frac{π}{2}$,結(jié)合正弦函數(shù)的圖象和性質(zhì)即可得解.

解答 (本題滿分為12分)
解:(1)由sin(2C-$\frac{π}{2}$)=$\frac{1}{2}$,得cos2C=-$\frac{1}{2}$,
又∵△ABC為銳角三角形,
∴2C=$\frac{2π}{3}$,即C=$\frac{π}{3}$;
(2)$\frac{a+b}{c}$=$\frac{sinA+sinB}{sinC}$=$\frac{{sinA+sin(\frac{2π}{3}-A)}}{{sin\frac{π}{3}}}$
=$\frac{{\frac{3}{2}sinA+\frac{{\sqrt{3}}}{2}cosA}}{{\frac{{\sqrt{3}}}{2}}}$=$2sin(A+\frac{π}{6})$,
由C=$\frac{π}{3}$,且三角形是銳角三角形可得$\left\{\begin{array}{l}A<\frac{π}{2}\\ B<\frac{π}{2}\end{array}\right.$,即$\frac{π}{6}<A<\frac{π}{2}$,
∴$\frac{\sqrt{3}}{2}$<$sin(A+\frac{π}{6})$≤1,
∴2•$\frac{\sqrt{3}}{2}$<$\frac{a+b}{c}$≤2,即$\sqrt{3}$<$\frac{a+b}{c}$≤2.

點評 本題主要考查了誘導(dǎo)公式,正弦定理,正弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=2x+$\frac{1}{x}$(x>0)的最小值是2$\sqrt{2}$,此時x=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.拋物線y=4x2上一點M到焦點的距離為1,則點M到x軸的距離是$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知關(guān)于x的一次函數(shù)y=ax+b,
(1)設(shè)集合P={-2,-1,1,2,3}和Q={-2,0,3},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=ax+b是增函數(shù)的概率;
(2)實數(shù)a,b滿足條件$\left\{{\begin{array}{l}{-1≤a≤1}\\{-1≤b≤1}\\{a+b-1≤0}\end{array}}\right.$求函數(shù)y=ax+b的圖象經(jīng)過二、三、四象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知b2+c2=a2+bc.
(1)求角A的大;
(2)如果cosB=$\frac{\sqrt{6}}{3}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.參數(shù)方程$\left\{\begin{array}{l}{x=\frac{2-3t}{1+t}}\\{y=\frac{1+4t}{1+t}}\end{array}\right.$,化成普通方程是3x+5y-11=0(x≠-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓的標準方程為:$\frac{x^2}{4}+\frac{y^2}{3}=1$,一個過點P(2,-3)的雙曲線的長軸的端點為橢圓的焦點,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)的最小值為2的是 (  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)
C.y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$D.y=tanx+$\frac{1}{tanx}$(0<x<$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(x)是R上周期為3的奇函數(shù),且已知f(1)=2014.則f(2015)=-2014.

查看答案和解析>>

同步練習(xí)冊答案