分析 可證f(x)+f(1-x)=1,由倒序相加法可得所求為1007對(duì)的組合,即1007個(gè)1,可得答案.
解答 解:∵函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,
∴f(x)+f(1-x)=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{{4}^{1-x}}{{4}^{1-x}+2}$=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{{4}^{x}•{4}^{1-x}}{{(4}^{1-x}+2)•{4}^{x}}$=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{2}{{4}^{x}+2}$=1
故可得S=f($\frac{1}{2015}$)+f($\frac{2}{2015}$)…+f($\frac{2014}{2015}$)=1007×1=1007
點(diǎn)評(píng) 本題考查倒序相加法求和,得出f(x)+f(1-x)=1并得出所求即為1007對(duì)項(xiàng)的和是解決問題的關(guān)鍵,屬中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$(1-$\frac{1}{{2}^{n}}$) | B. | $\frac{1}{3}$(4n-1) | C. | $\frac{1}{3}$(1-$\frac{1}{{4}^{n}}$) | D. | 1-$\frac{1}{{4}^{n}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com